The Buzz

Exxon’s Jacobs Gives Algal Update

April 22, 2011
AlgaeIndustryMagazine.com

Emil Jacobs, vice president of research and development at ExxonMobil Research and Engineering Company, has given an update on ExxonMobils’ Perspectives blog describing progress thus far in their $300 million investment into Synthetic Genomic to develop algal biofuels. Following are his comments…

In the nearly two years since we first announced our alliance with Synthetic Genomics Inc. (SGI), we’ve made good progress in our research aimed at developing next-generation biofuels from photosynthetic algae.

Basically, we are working to identify and develop strains of algae that could produce refinery feedstocks for the production of transportation fuels. We also need to design and engineer the systems to do this at scale. It’s a big program, and it will take time. We expect to spend more than $600 million on the program over the next decade, if the research and development milestones we’ve identified are met.

In July 2010, we took a significant step forward in our research program with the opening of a greenhouse facility at SGI’s headquarters in La Jolla, Calif.  The greenhouse is enabling the next level of research and testing, and it complements ongoing work in the laboratory, allowing us to grow algae in an environment that better reflects real-world conditions.

I’m often asked exactly what type of fuel we’re talking about. As far as products to expect from this program, our intent is to make hydrocarbons that look a lot like today’s transportation fuels. Here’s how we envision this working:

We know that certain types of algae produce bio-oils. The challenge is to find and develop the algae strains, and the production systems, that can produce bio-oils at scale with an attractive economic return. The ultimate goal is to have algae bio-oils processed in our refineries to supplement supplies of conventional gasoline, diesel, aviation fuels, and marine fuels. These fuels would meet the same specifications as today’s products derived from petroleum.  This is important because it helps ensure the biofuels are compatible with existing transportation technology and infrastructure.

How big could this be? At this stage, it is impossible to predict what percentage of global transportation demand could be met with algae biofuels. But our intent is to make algae an economically attractive and competitive source of fuel for transportation. If we can achieve that goal, the market demand should lead to increased use.

Another question I often get is why we decided to invest in algae versus other biofuels, such as corn-based or sugar-cane-based ethanol.  One reason is that algae can be grown using land or water that is unsuitable for plant or food production. In other words, unlike many other biofuels, algae biofuels do not compete with the food supply. Algae can yield more biofuel per acre than plant-based biofuels – currently 2,000 gallons of fuel per acre, per year. That’s almost five times more fuel per acre than sugar cane and almost 10 times more fuel per acre than corn.

The fact that algae production won’t compete for freshwater resources is also a key part in the decision.  We want to use salt water or brackish water to make the best use of the natural environment for the algae – there are a lot of places in the world where sunlight, salt water, and carbon-dioxide are in abundance. And, algae consume CO2 as they grow, so algae biofuels could help mitigate greenhouse gas emissions.

While algae could offer great potential as a transportation fuel, there are a number of challenges before us. First, there are more than 20,000 algae strains. We need to learn which of these strains can achieve the greatest production of bio-oils at the lowest cost.

Second, as we make advancements on selecting the right strains, we also need to test them in several production systems. That could be an open bioreactor (a pond) or a closed bioreactor (typically transparent tubes or something similar). Each has pros and cons, and at this point we don’t know which will work best. Integrating biology and engineering is the key.

If we do find the right strains and identify the right production system, there’s still another challenge ahead – scaling up the production process. It will take large, integrated systems to combine all these steps into a full scale, economic operation to produce, upgrade and commercialize biofuels from algae.

These challenges are significant, and overcoming them will take a considerable investment of time, money and scientific expertise. But we believe it’s an effort worth making, particularly given algae’s potential to help enhance the world’s transportation fuel supply and assist in reducing greenhouse gas emissions.

So, there’s still a lot of work ahead. The good news is that we’re making progress.  Since ExxonMobil and SGI announced the program in 2009, researchers have isolated and engineered a large number of candidate algal strains and developed growth conditions under which these strains could be made more productive.  We’ve identified and tested some of the preferred design characteristics of the different production systems. And we’ve begun life cycle and sustainability studies to assess the impact of each step in the process on greenhouse gas emissions, land use and water use.

The next major milestone in the program, expected later this year, is the opening of an outdoor test facility.

Go to HOME Page

Copyright ©2010-2011 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

Visit the A.I.M. Archives

AIM interview ArchivesAlgae 101 ArchivesHot Products ArchivesInnovations ArchivesMoney ArchivesProcess ArchivesResearch ArchivesScale Up ArchivesThe Buzz Archives

FREE Algae News & Updates

Sign up to receive breaking A.I.M. updates!

From The A.I.M. Archives

— Refresh Page for More Choices
By sending algae into space, a U.S. Department of Agriculture (USDA) scientist and his team will be able to study some of the key mechanisms that control plant growth and...
Kazuaki Nagata reports from Japan that while the Fukushima nuclear disaster has prompted vigorous discussion about alternative energy in Japan, there is a lack of a paral...
The Guardian reports that Prince Edward Island (P.E.I.), Canada-based Solarvest has created an inventive system utilizing a specific algal strain to grow and produce EPA ...
Jamie Radford writes in the Illawarra Mercury that Pia Winberg, from the University of Wollongong, believes that the South Coast of New South Wales, Australia (NSW) is in...
Algae Industry Magazine is pleased to announce a new Algae 101 series by our popular blogger, Mark Edwards, Professor, Arizona State University. The Algae Solutions to Na...
Perth, Western Australia-based Algae.Tec Limited has announced that the Reliance Group has converted the first tranche of options following the positive progress achieved...
Matthew Carr was recently named executive director of the Algae Biomass Organization (ABO), the leading trade association for the algae industry. His presence will soon b...
Channelnewsasia.com reports on three young Spaniards who harvest seaweed, a culinary delicacy, as a way for them to stay out of Spain’s troubled financial waters. 35-year...
Expanding from its initial work in algal biofuels, General Atomic’s (GA’s) Advanced Biological Processes team has focused on the rising need for food globally, specifical...
Oregon State University researchers are combining diatoms, a type of single-celled photosynthetic algae, with nanoparticles to create a sensor capable of detecting minisc...
Researchers at the Paul Scherer Institute (PSI) in Wädenswil, Switzerland, have succeeded in producing energy-rich gas from microalgae, and in doing so have demonstrated ...
SCHOTT AG, of Mitterteich, Germany, and Algatechnologies Ltd. (Algatech), based at Israel’s Kibbutz Ketura, have signed an R&D agreement to strengthen their partnersh...
Biplab Das reports in NatureAsia.com that a research team has found aqueous extracts of the marine brown algae Lobophoro variegate that can inhibit the replication of hum...
Analia Murias 
reports for fis.com that Chilean exports of products made from macroalgae generated a total of $195 million US in the first seven months of 2014, according...
James “Jamie” Levine took over the reigns at Sapphire Energy in July of this year as former President and CEO Cynthia “CJ” Warner stepped down, retaining her role as chai...
A team of Michigan State University algae researchers have discovered a cellular "snooze button" that has the potential to improve biofuel production and offer ...
On September 25, 2014, a photobioreactor for the cultivation of algae was officially unveiled during a seminar at Thomas More University College in Mechelen, Belgium. Und...
William Tucker writes in fullfreedom.org about the lure the oceans have for advocates of biofuel, particularly in Scandinavia. “Two-thirds of the globe is covered with wa...