[ad#PhycoBiosciences AIM Interview]

Research

Ehux “Tree of Life” alga sequenced

June 13, 2013
AlgaeIndustryMagazine.com

The Emiliania huxleyi (Ehux) alga has now been sequenced after a ten year effort by the DOE’s Joint Genome Institute.

The Emiliania huxleyi (Ehux) alga has now been sequenced after a ten year effort by the DOE’s Joint Genome Institute.

Scientists at the Department of Energy’s Joint Genome Institute (DOE JGI) have announced completion of sequencing the Emiliania huxleyi (Ehux) genome, allowing them to compare the sequences of this bottom of the food chain alga with those from other algal isolates.

Ehux represent the most abundant species of coccolithophore, the unicellular, eukaryotic phytoplankton distinguished by calcium carbonate scales (think White Cliffs of Dover) which are also important microfossils. An important part of the planktonic base of a large proportion of marine food webs, coccolithophores are of particular interest to those studying global climate change because as ocean acidity increases, their coccoliths may become even more important as a carbon sink.

The Ehux strain was isolated from the South Pacific and is the first reference genome for coccolithophores. Due to the complexities and size of the genome, the project ended up taking more than ten years. Originally estimated to be about 30 million bases, the genome ended up being closer to 141 million. The researchers were then able to conduct a comparison of 13 Ehux trains, revealing the first ever algal “pan genome.”

The coccolithophore is unique in that it doesn’t exist as a clearly defined “species” with a uniform genome, but as a more diffuse community of genomes (a pan-genome) with different individuals possessing a shared “core” of genes supplemented by different gene sets thought to be useful in dealing with the particular challenges of its local environment.

“Ehux thrives in a broad range of physiochemical conditions in the ocean,” Igor Grigoriev, the senior author of the study, said. “It’s a complex genome, with lots of genes and repeats, the first reference for haptophytes and fills another gap in the Eukaryotic Tree of Life.”

Other discoveries included genes that allow the Ehux to thrive in low levels of phosphorus and to assimilate and break down nitrogen-rich compounds. Additionally, the researchers discovered hints that Ehux may also be involved in the global sulfur cycle as it is able to produce a compound that can influence cloud formation and thus affect climate.

The project researchers see the availability of the Ehux genome sequence as an important first step in unlocking the molecular mechanisms that govern the nucleation, growth and nanoscale patterning of the calcium carbonate shells – like those that comprise the Cliffs of Dover. Long term, this work could lead to the design of new composite materials and devices for applications related to bone replacement, periodontal reconstruction, sensing systems, optoelectronic devices and the treatment of diseases.

Read More

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Most Americans get plenty of protein, primarily from animal products including meat, eggs and milk. But for many, ensuring a healthy protein intake can be challenging. In...
In a recent study, published in PLOS ONE Journal, the influence of light intensity on the growth and lipid productivity of Nannochloropsis salina was investigated in a fl...
James Goodman writes in the democratandchronicle.com about Jeffrey Lodge, an associate professor of biological sciences at Rochester Institute of Technology, who knows wh...
Sami Zaatari writes for the Middle East’s Gulf News that Abu Dhabi’s coastal sabkhas – the Arabic phonetic translation for salt flats – hold great potential for solar pow...
Studies conducted by EnAlgae partners in Ireland, France and Belgium point the way to seaweed being a viable and sustainable feedstock for the future in North West Europe...
Algiran, an Iranian algal biotech company, has recently established a pilot scale algal cultivation demonstration facility at the Chabahar Free Zone, in the Baluchistan P...
Nitrogen and phosphate nutrients are among the biggest costs in cultivating algae for biofuels. Sandia National Laboratories molecular biologists Todd Lane and Ryan Davis...
Michigan State University (MSU) and PHYCO2, an algae growth and CO2 sequestration company based in Santa Maria, CA, have entered into a partnership to develop algae techn...
Tel Aviv, Israel-based UniVerve Ltd. has begun scaling-up its technological process for algae cultivation. The oil, which can be extracted with off-the-shelf wet extracti...
Jennifer Grebow writes in Nutritional Outlook that astaxanthin supplier AstaReal, of Burlington, NJ, one of the founding members of the Natural Algae Astaxanthin Associat...
The Consortium for Algal Biofuel Commercialization (CAB-Comm), led by the University of California, San Diego, has just released its final report, detailing the many acco...
EPA (eicosapentaenoic acid) fortified eggs are developing quite a demand among middle and upper-class consumers in China. With clinical trials demonstrating that EPA can ...