[ad#PhycoBiosciences AIM Interview]

Research

Ehux “Tree of Life” alga sequenced

June 13, 2013
AlgaeIndustryMagazine.com

The Emiliania huxleyi (Ehux) alga has now been sequenced after a ten year effort by the DOE’s Joint Genome Institute.

The Emiliania huxleyi (Ehux) alga has now been sequenced after a ten year effort by the DOE’s Joint Genome Institute.

Scientists at the Department of Energy’s Joint Genome Institute (DOE JGI) have announced completion of sequencing the Emiliania huxleyi (Ehux) genome, allowing them to compare the sequences of this bottom of the food chain alga with those from other algal isolates.

Ehux represent the most abundant species of coccolithophore, the unicellular, eukaryotic phytoplankton distinguished by calcium carbonate scales (think White Cliffs of Dover) which are also important microfossils. An important part of the planktonic base of a large proportion of marine food webs, coccolithophores are of particular interest to those studying global climate change because as ocean acidity increases, their coccoliths may become even more important as a carbon sink.

The Ehux strain was isolated from the South Pacific and is the first reference genome for coccolithophores. Due to the complexities and size of the genome, the project ended up taking more than ten years. Originally estimated to be about 30 million bases, the genome ended up being closer to 141 million. The researchers were then able to conduct a comparison of 13 Ehux trains, revealing the first ever algal “pan genome.”

The coccolithophore is unique in that it doesn’t exist as a clearly defined “species” with a uniform genome, but as a more diffuse community of genomes (a pan-genome) with different individuals possessing a shared “core” of genes supplemented by different gene sets thought to be useful in dealing with the particular challenges of its local environment.

“Ehux thrives in a broad range of physiochemical conditions in the ocean,” Igor Grigoriev, the senior author of the study, said. “It’s a complex genome, with lots of genes and repeats, the first reference for haptophytes and fills another gap in the Eukaryotic Tree of Life.”

Other discoveries included genes that allow the Ehux to thrive in low levels of phosphorus and to assimilate and break down nitrogen-rich compounds. Additionally, the researchers discovered hints that Ehux may also be involved in the global sulfur cycle as it is able to produce a compound that can influence cloud formation and thus affect climate.

The project researchers see the availability of the Ehux genome sequence as an important first step in unlocking the molecular mechanisms that govern the nucleation, growth and nanoscale patterning of the calcium carbonate shells – like those that comprise the Cliffs of Dover. Long term, this work could lead to the design of new composite materials and devices for applications related to bone replacement, periodontal reconstruction, sensing systems, optoelectronic devices and the treatment of diseases.

Read More

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Scientists at Dartmouth College, in Hanover, New Hampshire, have discovered that marine microalgae can completely replace the wild fish oil currently used to feed tilapia...
In Australia, the New South Wales Deep Green Biotech Hub (DGBH) has been launched as an enabling incubator environment to foster the development of algae as a cost effect...
Judy Siegel-Itzkovich writes in the Jerusalem Post that Dr. Iftach Yacoby and his research team at Tel Aviv University, in Israel, have genetically altered microalgae to ...
In one of the most comprehensive studies to date, University of North Carolina at Chapel Hill researchers have sequenced the genes of a harmful algal bloom, unveiling nev...
Discovering which algae species is best suited to make biofuel is no small task. Researchers have tried to evaluate algae in test tubes, but often find lab results don’t ...
Sarah Karacs reports for @CNNTech that Japanese firm Euglena has been cultivating a type of algae for use in food and cosmetics. But it sees a range of other potential us...
ExxonMobil and Synthetic Genomics Inc. have announced that, in joint research into advanced biofuels, they have modified an algal strain to more than double its oil conte...
WesTech Engineering, Inc. and Utah State University’s Sustainable Waste-to-Bioproducts Engineering Center (SWBEC) are jointly engaged in developing processes for more eff...
Researchers at ETH Zurich, Empa and the Norwegian research institute SINTEF are pursuing a new approach to treating arthritis. This is based on a polysaccharide, a long-c...
Malaysia-based Algaetech International, a pioneer algae technology company specializing in R&D, as well as production and commercialization of algae-derived high ...
The Utah Science Technology and Research (USTAR) initiative, a technology-based economic development program funded by the state of Utah, has awarded a $175,320 grant for...
Trade Arabia reports that the Oman Centre for Marine Biotechnology (OCMB) recently signed a memorandum of understanding with Swedish Algae Factory to support the domestic...