Click here for more information about Algenuity
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Research

Developing an integrated algal biorefinery

December 12, 2017
AlgaeIndustryMagazine.com

Microalgal biorefinery rendering. Credit: pmoaruba.com

Yogendra Shastri writes in sciencetrends.com about a recently published study that proposes an integrated biorefinery — co-producing fuel, a low-value high-volume product, with other value-added products such as protein, reduced sugar, and polar lipids – which are high value and low volume. The study, by Dr. Shastri and his research associates at Indian Institute of Technology Bombay, Mumbai, India, Soumyajit Sen Gupta and Sharad Bhartiya, appears in the journal Biofuels, Bioproducts and Biorefining.

In this study, an optimization model considering the production of biodiesel along with various value-added chemicals is developed. The various processing stages considered include cultivation of microalgae, harvesting, and drying, lipid extraction, followed by transesterification to produce biodiesel. Lipids may also be fractionated into individual classes. Lipid extracted microalgae may be used for extraction of protein and reduced sugar.

The constraints of the model include a mass balance among the various steps, along with equations governing equipment sizing, process synthesis, and economics. Amount of solution and quantity of biomass cultivated are some of the continuous variables whereas the number of equipment and number of batches are examples of integer variables in the model. Selection of alternatives is attained by binary variables. The optimization model is a Mixed Integer Linear Programming (MILP) and is developed in General Algebraic Modeling System (GAMS). The objective is to minimize the net Annualized Life Cycle Cost (ALCC) of producing a fixed amount of biodiesel.

The model is applied to a scenario with 30 Mg/d production target of biodiesel from phototrophic strains, with an upper bound on the demands for other value-added products. The biodiesel ALCC is US $ 8.53/L and reducing sugar is obtained as a co-product. This ALCC is 35% less than that when biodiesel is the only product of the refinery. Growth, performed in raceway ponds, is the most expensive step, accounting for 74% of the final biodiesel cost. The optimal flowsheet and operating strategy for each step are also recommended. Options such as supercritical lipid extraction and growth in photobioreactors are highly efficient for individual steps but are not optimal from a biorefinery perspective.

Several options to further reduce the biodiesel are explored. Co-cultivation of the phototrophic and heterotrophic strains reduces the ALCC by 10.2%. Optimal batch scheduling with infinite intermediate storage coupled with debottlenecking reduces the net ALCC by 25%. The integrated biorefinery is highly profitable if reducing sugar is the main product with unlimited demand. In such cases, a shorter microalgae growth cycle with higher carbohydrate fraction is preferred, and biodiesel becomes a side product. The comprehensive integrated model enables informed decision-making for the microalgae biorefinery.

Read More

More Like This…

Copyright ©2010-2018 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
Monica Jain of Fish 2.0 writes in National Geographic about how the algae brand is about to undergo an image makeover, and may soon seem flat-out glamorous — once again. ...
WesTech Engineering, Inc. and Utah State University’s Sustainable Waste-to-Bioproducts Engineering Center (SWBEC) are jointly engaged in developing processes for more eff...
The U.S. Department of Energy (DOE) has announced the selection of three projects to receive up to $8 million, aimed at reducing the costs of producing algal biofuels and...
Carlsbad-based Surftech, a stand-up paddle (SUP) and Surfboard manufacturing company has announced its collaboration with BLOOM, a materials development company, to devel...
Washington State University researchers have developed a biofilm reactor to grow algae more efficiently, and make the algae more viable for several industries, including ...
The European Synchrotron Radiation Facility (ESRF) reports that an international team has discovered an enzyme which allows microalgae to convert some of their fatty acid...
Sex self-destruction represents a fascinating new scientific mystery that includes climate chaos, ghost forests, temperature spikes, fierce storms, colossal nutrient coll...
Watertechonline.com reports that the All-Gas project in the El Torno treatment plant in Chiclana, in southwestern Spain, in the province of Cádiz, has started its demonst...
The Utah Science Technology and Research (USTAR) initiative, a technology-based economic development program funded by the state of Utah, has awarded a $175,320 grant for...
The recently signed US two-year budget deal – featuring bipartisan support for a $35 per ton tax incentive for carbon captured and recycled from power plants or industria...
Israeli-based Algatechnologies, Ltd. (Algatech) has become the major shareholder in Supreme Health New Zealand, Ltd. (Supreme) to supply the rapidly growing markets in Ch...
Have some of the final engineering limitations of microalgae been overcome? Can microalgae be hosts for genetic engineering as powerful as bacteria and yeast? A promising...