Innovations

Mosquitoes from the genus Anopheles transmit the protozoan that causes malaria.

Mosquitoes from the genus Anopheles transmit the protozoan that causes malaria.

On Developing an Algal-based Cure for Malaria

June 17, 2012, by Dr. Stephen Mayfield
AlgaeIndustryMagazine.com

Over the past ten years, work from our lab has identified mechanisms of chloroplast gene expression that have allowed for development of recombinant protein expression and metabolic engineering in the algal chloroplast.

Transformation of algae is relatively easy. You can transform either the nuclear or the chloroplast genome. If you get DNA in, and you have a good selectable marker and a good selection system, you can get transformation.

There are rather complex structures that fold into three-dimensional RNA elements that are bound by protein factors, and that is a requirement for translation. We still haven’t sorted this all out, but we’ve identified a number of elements that are required, and a number of proteins that interact in order to get translation.

Having accumulated these proteins and showing that they were bioactive, we went back to ask, “What’s the advantage of expressing something inside of a chloroplast, or inside of an algae? What biological advantages does that give you over expressing the protein in a bacterial or a mammalian cell culture?”

So one of the things that the lab came up with was to try and express malarial proteins. And the reason we wanted to express these was because malarial proteins have many different domains inside of them, folded in very complex proteins. Malaria is a euchariotic parasite, and their proteins form complex structures that have many disulfite bonds, but the proteins are not glycosolated.

That’s important because when you try to express these proteins in bacterial systems, they are incapable of doing the complex fold and they won’t form disulfate bonds. If you’re trying to express these in mammalian systems, they’ll form the disulfite bonds and correctly fold them, but then they decorate the proteins with sugar—they glycosolate them—so that if you use these as a vaccine, you end up getting antibodies to the sugars rather than the proteins.

Mayfield Lab team (L to R): Javier Gimpel, Dan Barrera, Liz Specht, Beth Rasala, Jamie Gregory, Stephen Mayfield, Carla Jones, Mike Hannon, Trang Le, Miller Tran, Julie Kim, Crystal Warning

Mayfield Lab team (L to R): Javier Gimpel, Dan Barrera, Liz Specht, Beth Rasala, Jamie Gregory, Stephen Mayfield, Carla Jones, Mike Hannon, Trang Le, Miller Tran, Julie Kim, Crystal Warning

So, we knew that inside of chloroplasts—inside of all plastids—we could fold complex proteins. We could make disulfate bonds. But we also knew there was no mechanism to glycosolate these. So we expressed three different surface antigens, PFS-25, 28 and 45. All of those proteins accumulate very well inside the chloroplast. Importantly, they all fold correctly. So then, antibodies directed against native proteins, which only recognize the correctly folded native proteins, also recognized the algal-expressed proteins.

Most importantly, when we injected these proteins into mice, the mice-generated antibodies recognized the correctly folded proteins, and we had an immune response. Those antibodies blocked malaria transmission within the mice.

It’s important to understand, for something like malaria, that most recombinant vaccines today cost about a hundred dollars a dose, and generally you need two or three injections. So clearly for the people in the malaria belt—and there are about two billion people on this planet in the malaria belt—they simply do not have the resources to even think about spending two or three hundred dollars for a vaccine.

I think these developments using algal proteins are beginning to give us the opportunity to make those vaccines cheap enough that we can think about the real possibility of inoculating two billion people.

A co-founder of the San Diego Center for Algae Biotechnology (SD-CAB), and Sapphire Energy, Dr. Mayfield is Professor of Molecular Biology, and the John Dove Isaacs Chair of Natural Philosophy, at UC San Diego.

More Like This…

Go to HOME Page

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Oregon State University researchers are combining diatoms, a type of single-celled photosynthetic algae, with nanoparticles to create a sensor capable of detecting minisc...
Chase Ezell writes in Earth911.com about the irony of Algenol’s biggest friction source on the way to marketing their carbon reducing algal-based ethanol being — the EPA ...
SCHOTT AG, of Mitterteich, Germany, and Algatechnologies Ltd. (Algatech), based at Israel’s Kibbutz Ketura, have signed an R&D agreement to strengthen their partnersh...
Analia Murias 
reports for fis.com that Chilean exports of products made from macroalgae generated a total of $195 million US in the first seven months of 2014, according...
Arizona is taking advantage of its open land and ample sunshine to assume a leadership position in the algae biofuel field. The state is home to two national algae testbe...
A team of Michigan State University algae researchers have discovered a cellular "snooze button" that has the potential to improve biofuel production and offer ...
Renewable fuels company Muradel has launched Australia’s first integrated demonstration plant to sustainably convert algae into green crude, as a first step towards a com...
Solazyme, Inc. and Versalis, the chemical subsidiary of Eni S.p.A., one of the world’s largest oil and gas companies, today announced a partnership to expand the commerci...
In October 2014 an unusual AlgaePARC research paper entitled Design and construction of the microalgal pilot facility AlgaePARC was published in the Journal of Algal Rese...
Most Americans get plenty of protein, primarily from animal products including meat, eggs and milk. But for many, ensuring a healthy protein intake can be challenging. In...
Western Morning News reports that Westcountry scientists in the U.K. are using algae to develop an innovative new method of cleaning up contaminated mine water while harv...
Cyanobacteria, also known as blue-green algae because of their color, have endured for more than 2.5 billion years, providing ample time to adapt to changes in the Earth'...
Allan Koay writes in thestar.com about a Universiti Malaya research project paving the way for the commercial production of paper pulp and bioethanol from seaweed. The Al...
Kevin Quon writes in Seeking Alpha about the financial plights and pivots of Solazyme, the algae industry’s most high profile recent IPO. In a year that started with a sh...
Much of the development of the algae industry in 2014 was driven by domestic and international alliances, partnerships, and mergers that brought complementary skills and ...
Green Star Products, Inc. (GSPI) has signed a contract to build a demonstration facility in Las Vegas, Nevada, to produce commercial quality algae. The Hybrid Algae Produ...
Fort Myers, FL-based Algenol has announced that the U.S. Environmental Protection Agency (EPA) has approved fuels made from Algenol’s process as an advanced biofuel, meet...
In an age where customer input is as easy as a click, OriginOil has tapped directly into its intended market to R&D their next generation algae harvester -- with a de...