[ad#PhycoBiosciences AIM Interview]

Innovations

Mosquitoes from the genus Anopheles transmit the protozoan that causes malaria.

Mosquitoes from the genus Anopheles transmit the protozoan that causes malaria.

On Developing an Algal-based Cure for Malaria

June 17, 2012, by Dr. Stephen Mayfield
AlgaeIndustryMagazine.com

Over the past ten years, work from our lab has identified mechanisms of chloroplast gene expression that have allowed for development of recombinant protein expression and metabolic engineering in the algal chloroplast.

Transformation of algae is relatively easy. You can transform either the nuclear or the chloroplast genome. If you get DNA in, and you have a good selectable marker and a good selection system, you can get transformation.

There are rather complex structures that fold into three-dimensional RNA elements that are bound by protein factors, and that is a requirement for translation. We still haven’t sorted this all out, but we’ve identified a number of elements that are required, and a number of proteins that interact in order to get translation.

Having accumulated these proteins and showing that they were bioactive, we went back to ask, “What’s the advantage of expressing something inside of a chloroplast, or inside of an algae? What biological advantages does that give you over expressing the protein in a bacterial or a mammalian cell culture?”

So one of the things that the lab came up with was to try and express malarial proteins. And the reason we wanted to express these was because malarial proteins have many different domains inside of them, folded in very complex proteins. Malaria is a euchariotic parasite, and their proteins form complex structures that have many disulfite bonds, but the proteins are not glycosolated.

That’s important because when you try to express these proteins in bacterial systems, they are incapable of doing the complex fold and they won’t form disulfate bonds. If you’re trying to express these in mammalian systems, they’ll form the disulfite bonds and correctly fold them, but then they decorate the proteins with sugar—they glycosolate them—so that if you use these as a vaccine, you end up getting antibodies to the sugars rather than the proteins.

Mayfield Lab team (L to R): Javier Gimpel, Dan Barrera, Liz Specht, Beth Rasala, Jamie Gregory, Stephen Mayfield, Carla Jones, Mike Hannon, Trang Le, Miller Tran, Julie Kim, Crystal Warning

Mayfield Lab team (L to R): Javier Gimpel, Dan Barrera, Liz Specht, Beth Rasala, Jamie Gregory, Stephen Mayfield, Carla Jones, Mike Hannon, Trang Le, Miller Tran, Julie Kim, Crystal Warning

So, we knew that inside of chloroplasts—inside of all plastids—we could fold complex proteins. We could make disulfate bonds. But we also knew there was no mechanism to glycosolate these. So we expressed three different surface antigens, PFS-25, 28 and 45. All of those proteins accumulate very well inside the chloroplast. Importantly, they all fold correctly. So then, antibodies directed against native proteins, which only recognize the correctly folded native proteins, also recognized the algal-expressed proteins.

Most importantly, when we injected these proteins into mice, the mice-generated antibodies recognized the correctly folded proteins, and we had an immune response. Those antibodies blocked malaria transmission within the mice.

It’s important to understand, for something like malaria, that most recombinant vaccines today cost about a hundred dollars a dose, and generally you need two or three injections. So clearly for the people in the malaria belt—and there are about two billion people on this planet in the malaria belt—they simply do not have the resources to even think about spending two or three hundred dollars for a vaccine.

I think these developments using algal proteins are beginning to give us the opportunity to make those vaccines cheap enough that we can think about the real possibility of inoculating two billion people.

A co-founder of the San Diego Center for Algae Biotechnology (SD-CAB), and Sapphire Energy, Dr. Mayfield is Professor of Molecular Biology, and the John Dove Isaacs Chair of Natural Philosophy, at UC San Diego.

More Like This…

Go to HOME Page

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Prior posts highlight the value proposition for building a Green Friendship Bridge of algae microfarms in lieu of 1%, (13 miles) of Donald Trump’s proposed border wall wi...
The water sample taken from the St. Lucie River near the coastline of Ft. Pierce, Florida was loaded with blue-green algae when it arrived in Ben Spaulding’s lab in Scarb...
In New Zealand is an internationally significant collection of microalgae cultures known as the Cawthron Institute Culture Collection of Microalgae (CICCM). The CICCM was...
Cheryl Katz writes in National Geographic that Iceland’s last living lake balls are disappearing. The fluffy green supersize diatoms as large as a head of cabbage are one...
Jill Fehrenbacher writes in inhabitat.com that when it comes to design, Mother Nature has a lot to teach us. The field of Biodesign has emerged as an exciting new discipl...
Agcore Technologies LLC, producer of Agcore Spirulina, has announced that their 2016 expansion project to support their growing aquafeed demand is in the completion proce...
Diane Stopyra writes in Salon.com that a growing number of coastal states around the country are undertaking large-scale seaweed farming projects. While farms are underwa...
Monica Jain of Fish 2.0 writes in National Geographic about how the algae brand is about to undergo an image makeover, and may soon seem flat-out glamorous — once again. ...
The recent announcement by the U.S. Department of Energy (DOE) of three projects to receive up to $8 million, aimed at reducing the costs of producing algal biofuels and ...
Adoption of advanced technologies in various stages of natural astaxanthin production, such as microalgae harvesting, cultivation, extraction, and drying, have been major...
UC San Diego students and researchers have produced the world’s first algae-based, renewable flip flops. The first prototypes of their new invention, developed over the s...
Portuguese microalgae producer, Allmicroalgae Natural Products S.A., has recently begun production of Chlorella vulgaris and other microalgae species via fermentation, wh...