[ad#PhycoBiosciences AIM Interview]

Innovations

Mosquitoes from the genus Anopheles transmit the protozoan that causes malaria.

Mosquitoes from the genus Anopheles transmit the protozoan that causes malaria.

On Developing an Algal-based Cure for Malaria

June 17, 2012, by Dr. Stephen Mayfield
AlgaeIndustryMagazine.com

Over the past ten years, work from our lab has identified mechanisms of chloroplast gene expression that have allowed for development of recombinant protein expression and metabolic engineering in the algal chloroplast.

Transformation of algae is relatively easy. You can transform either the nuclear or the chloroplast genome. If you get DNA in, and you have a good selectable marker and a good selection system, you can get transformation.

There are rather complex structures that fold into three-dimensional RNA elements that are bound by protein factors, and that is a requirement for translation. We still haven’t sorted this all out, but we’ve identified a number of elements that are required, and a number of proteins that interact in order to get translation.

Having accumulated these proteins and showing that they were bioactive, we went back to ask, “What’s the advantage of expressing something inside of a chloroplast, or inside of an algae? What biological advantages does that give you over expressing the protein in a bacterial or a mammalian cell culture?”

So one of the things that the lab came up with was to try and express malarial proteins. And the reason we wanted to express these was because malarial proteins have many different domains inside of them, folded in very complex proteins. Malaria is a euchariotic parasite, and their proteins form complex structures that have many disulfite bonds, but the proteins are not glycosolated.

That’s important because when you try to express these proteins in bacterial systems, they are incapable of doing the complex fold and they won’t form disulfate bonds. If you’re trying to express these in mammalian systems, they’ll form the disulfite bonds and correctly fold them, but then they decorate the proteins with sugar—they glycosolate them—so that if you use these as a vaccine, you end up getting antibodies to the sugars rather than the proteins.

Mayfield Lab team (L to R): Javier Gimpel, Dan Barrera, Liz Specht, Beth Rasala, Jamie Gregory, Stephen Mayfield, Carla Jones, Mike Hannon, Trang Le, Miller Tran, Julie Kim, Crystal Warning

Mayfield Lab team (L to R): Javier Gimpel, Dan Barrera, Liz Specht, Beth Rasala, Jamie Gregory, Stephen Mayfield, Carla Jones, Mike Hannon, Trang Le, Miller Tran, Julie Kim, Crystal Warning

So, we knew that inside of chloroplasts—inside of all plastids—we could fold complex proteins. We could make disulfate bonds. But we also knew there was no mechanism to glycosolate these. So we expressed three different surface antigens, PFS-25, 28 and 45. All of those proteins accumulate very well inside the chloroplast. Importantly, they all fold correctly. So then, antibodies directed against native proteins, which only recognize the correctly folded native proteins, also recognized the algal-expressed proteins.

Most importantly, when we injected these proteins into mice, the mice-generated antibodies recognized the correctly folded proteins, and we had an immune response. Those antibodies blocked malaria transmission within the mice.

It’s important to understand, for something like malaria, that most recombinant vaccines today cost about a hundred dollars a dose, and generally you need two or three injections. So clearly for the people in the malaria belt—and there are about two billion people on this planet in the malaria belt—they simply do not have the resources to even think about spending two or three hundred dollars for a vaccine.

I think these developments using algal proteins are beginning to give us the opportunity to make those vaccines cheap enough that we can think about the real possibility of inoculating two billion people.

A co-founder of the San Diego Center for Algae Biotechnology (SD-CAB), and Sapphire Energy, Dr. Mayfield is Professor of Molecular Biology, and the John Dove Isaacs Chair of Natural Philosophy, at UC San Diego.

More Like This…

Go to HOME Page

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
William Tucker writes in fullfreedom.org about the lure the oceans have for advocates of biofuel, particularly in Scandinavia. “Two-thirds of the globe is covered with wa...
Cyanobacteria, also known as blue-green algae because of their color, have endured for more than 2.5 billion years, providing ample time to adapt to changes in the Earth'...
Allan Koay writes in thestar.com about a Universiti Malaya research project paving the way for the commercial production of paper pulp and bioethanol from seaweed. The Al...
Fort Myers, FL-based Algenol has announced that the U.S. Environmental Protection Agency (EPA) has approved fuels made from Algenol’s process as an advanced biofuel, meet...
Fort Myers, FL-based Algenol, and India's Reliance Industries Ltd., have deployed India’s first Algenol algae production platform. The demonstration module is located nea...
James Goodman writes in the democratandchronicle.com about Jeffrey Lodge, an associate professor of biological sciences at Rochester Institute of Technology, who knows wh...
Tom Redmond and Yuko Takeo report for Bloomberg.com that, after 10 years of developing algae as a nutritional supplement generating $37.8 million in annual revenue, Japan...
In Japan, the Algae Biomass Energy System Development Research Center, headed by Professor Makoto Watanabe, was established at the University of Tsukuba on July 1. The ne...
Students of algal research, including it's various applications and business models, have increasing opportunities to get quickly up to speed in many aspects of the rapid...
The new algae raceway testing facility, opening February 4 at Sandia National Laboratories in Livermore, California, paves a direct path between laboratory research and s...
A multiple-effect evaporator (MEE) is a system designed for efficiently using the heat from steam to evaporate water. This equipment is recommended by pollution control a...
The GNT Group, a market leader in using algae as natural ingredients for color, has begun construction of an additional spirulina plant at its headquarters in Mierlo, the...