Click here for more information about Algenuity
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Innovations

Dartmouth scientists making aquafeed more sustainable

August 19, 2018
AlgaeIndustryMagazine.com

Dartmouth researchers Pallab Sarker and Anne Kapuscinski, who is now at UC Santa Cruz, conducting sustainable aquaculture research with Nile tilapia. Credit: Devin S. Fitzgerald

Dartmouth scientists have created a more sustainable feed for aquaculture by using a marine microalga co-product as a feed ingredient. The study is the first of its kind to evaluate replacing fishmeal with a co-product in feed designed specifically for Nile tilapia. The results are published in the open access journal, PLOS ONE.

Aquaculture is the world’s fastest growing food sector, surpassing the global capture fisheries production in 2014. It provides more than 50 percent of the food supply to humans; however, it poses several environmental concerns. Aquaculture feed (aquafeeds) draws on 70 percent of the world’s fishmeal and fish oil, which is obtained from small, ocean-caught fish such as anchovies, sardines, herring, menhaden, and mackerel, that are essential to the lower end of the marine food chain. Analysts project that by 2040, the demand for fishmeal and fish oil will exceed supply.

Aquafeeds also draw on large amounts of soy and corn from industrial farms, which pose other environmental concerns due to the use of fertilizers and potential runoff into rivers, lakes and coastal waters. Aquafeeds may additionally trigger nutrient pollution in aquaculture effluent, as fish are unable to fully digest soy and corn.

To address the environmental sustainability concerns regarding aquafeed, a Dartmouth team has been developing sustainable feeds for Nile tilapia. Their tests have been examining the effectiveness of replacing fishmeal and fish oil with different types of marine microalgae.

The Dartmouth research team’s latest work replaces fishmeal with a marine microalga co-product, Nannochloropsis oculata, which is rich in both protein and omega-3 fatty acids, including eicosapentaenoic acid –essential to fish growth and quality. The co-products are left-over algae meal, after the oils have been extracted from commercially-grown algae biomass to manufacture nutraceuticals, chemicals and fuel applications. This co-product is available at commercial scale and continued increases in supply are expected. The study’s findings show promise in replacing conventional protein ingredients in tilapia feeds.

The results demonstrated that the co-product had higher protein content than the whole cells but had lower digestibility than whole cells. The co-product showed the highest digestibility of lysine, an essential amino acid that is often deficient in terrestrial crop-based aquafeed ingredients, as well as the highest eicosapentaenoic acid (EPA) digestibility.

The team also evaluated several feeds with varying percentages of co-product replacing fishmeal. When 33 percent of fishmeal was replaced with the co-product, the Nile tilapia had fish growth and a feed conversion ratio and survival rate similar to those on the reference diet for which fishmeal was seven percent of the diet. The team hypothesizes that the co-product may need to be enhanced with enzyme(s) to maximize nutrient availability and counter the lower digestibility observed in the experiment.

“The possibilities for developing a sustainable approach to aquaculture are exciting. Our society has an opportunity to shift aquafeed’s reliance on fish-based ingredients to a fish-free product that is based on marine microalgae, and our findings provide new insight into how we can get there,” says lead author, Pallab Sarker, a research assistant professor at Dartmouth.

The research builds on the team’s earlier work developing a marine microalga feed for Nile tilapia made from Schizochytrium sp., which evaluated how the feed affected digestibility and growth. The results demonstrated that Schizochytrium sp. was highly digestible lipid and DHA, an omega-3 fatty acid source for tilapia. The tilapia not only had higher weight gain but better feed conversion compared to those on a control diet containing fish oil, when the Schizochytrium sp fully replaced the fish oil.

As part of the team’s goal to eliminate aquafeed’s reliance on marine fish and terrestrial crop inputs, they are combining Nannochloropsis co-product with other marine microalgae to make aquaculture feeds more sustainable.

More Like This…

Copyright ©2010-2019 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
“The Israeli food-tech industry has been growing in leaps and bounds in recent years and is taking a leading role worldwide with a broad range of innovative companies and...
French researchers have been exploring the potential of algae for boosting the immune systems of animals and reducing the use of antibiotics in livestock farming. Past st...
At the Technical University of Denmark (DTU), Science Nordic.com reports, researchers are investigating bioluminescent algae, to determine whether bioluminescent organism...
Israeli-based Algatechnologies, Ltd. (Algatech), is teaming up with the Italian R&D company, Sphera Encapsulation S.r.l (Sphera), to develop innovative functional ingredi...
Hayley Dunning writes from the Imperial College of London that a new discovery has changed our understanding of the basic mechanism of photosynthesis and should rewrite t...
Sophie Kevany writes in Decanter.com that a group of vineyards in France’s Bordeaux and Cognac regions are exploring whether algae can be used to prevent the fungal infec...
San Diego, CA and Kailua-Kona, HI-based Cellana, Inc. has signed an Asset Purchase Agreement with Cyanotech Corporation for the sale of Cellana’s six-acre production and ...
Milenio.com reports that BiomiTech, a Mexican company, won a prestigious innovation award for its air purification system at the Contamination Expo Series 2018 held in Bi...
Cécile Barbière writes for Euractive.fr (translated by Rob Kirby) that, in large greenhouses formerly home to the tomatoes and cucumbers of the market gardening Groupe Ol...
The Swiss Algae Consortium Association (SWALG) was founded in May 2018 as a non-profit organization that serves as a platform for algae-related activities in Switzerland ...
AlgaEnergy, a Spanish biotechnology company specializing in the production and commercial applications of microalgae, and Yokogawa Electric Corporation, a leading provide...
Steve Fountain writes in fortstocktonpioneer.com that, amid the 800-page law that last month set the country’s farm policy through 2023, is the expansion of federal suppo...