Click here for more information about Algenuity
Click here for more information about LiqofluxPhenometrics Buy 3 Get 1 Free
Visit cricatalyst.com!Evodos Separation Technology

Research

Cyanobacteria efficient at “harvesting” light

December 18, 2015
AlgaeIndustryMagazine.com

An 800ps fluorescence signature from cyanobacterial cells obtained with time-resolved fluorescence spectroscopy, the main technique used in this work. Credit: phys.org

An 800ps fluorescence signature from cyanobacterial cells obtained with time-resolved fluorescence spectroscopy, the main technique used in this work. Credit: phys.org

Cyanobacteria, also known as blue-green algae, have an ingenious system to prepare themselves for the coming daylight when it is dark by setting up a large “antenna.” This antenna helps them capture light energy in an efficient way, while also providing protection against damage to the photosynthesis mechanism of the bacteria.

This revolutionary discovery about the functioning of the antenna was made by the Laboratory of Biophysics of Wageningen University. “Enhancing the photosynthesis of our crops is as important as the Green Revolution has been,” says Eric Schranz, professor in Biosystematics. “To achieve this improvement we need new and very detailed information about the possibilities which nature provides. This new knowledge is therefore a major breakthrough.”

Dr. M.E. (Eric) Schranz, Professor of Biosystematics at Wageningen University

Dr. M.E. (Eric) Schranz, Professor of Biosystematics at Wageningen University

Cyanobacteria are among the “oldest” organisms on earth. They live in the water and play a key role in capturing CO2 and producing oxygen. While their photosynthesis method can be compared to that of plants, they also have specific adaptations in order to function well in relatively dark water. Their light-capturing “antennas” are very important in this process and are linked to two “photosystems.”

“The first photosystem separates water, in which oxygen is released as a by-product,” explains Herbert van Amerongen, professor in Biophysics at Wageningen University. “This creates electrons that move to the other photosystem and enable various other reactions. Together, the systems facilitate the eventual formation of sugars as an end product of the photosynthesis.”

Although the blue-green algae do not capture CO2 at night, they do continue to breathe. Various systems become saturated with electrons as a result, which is a dangerous situation when it becomes light. “It may create free radicals that can damage the photosynthesis mechanism,” Dr. Van Amerongen adds.

For this reason, the bacteria set up an extra-large antenna while it is still dark so they are able to utilize the light energy without damage. “Once the surplus of electrons has been removed – and the danger has passed – part of the antenna is disconnected and continues to float in the cell.”

This insight undermines existing theories about the functioning of such antennas in photosynthesis. Involving fundamental research, the discovery also contains a social aspect: cyanobacteria are used in a revolutionary technique for developing biobased fuels as an alternative to oil and gas in the BioSolar Cells programme. “It is very useful to gain a better understanding into the photosynthesis of these organisms, which would allow us to further improve efficiency,” says Dr. Van Amerongen.

Dr. Van Amerongen’s colleague Dr. Schranz sees the relevance extending even further than that. Enhancing photosynthesis is one of the spearheads of Wageningen UR and this type of fundamental understanding enables many new applications, even in the plant world.

“We need to gain better insight into photosynthesis to feed the growing global population and adapt crops to climate change,” he says. “Our crops currently manage light energy inefficiently. Less than one per cent is converted into biomass, while, in theory, ten per cent is feasible. Even an increase to two per cent would have a hugely positive effect on food production worldwide. To do so, we need to have insight into the full range of natural possibilities for photosynthesis. This includes the functioning of blue-green algae in low light conditions and Alpine plants in extremely high light intensities. We can learn a great deal from their reaction to changing light levels.”

More Like This…

Copyright ©2010-2019 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
Judith Lewis Mernit writes in e360.yale.edu that an experiment being conducted by animal science professor Ermias Kebreab at the University of California, Davis, is testi...
San Diego, CA and Kailua-Kona, HI-based Cellana, Inc. has signed an Asset Purchase Agreement with Cyanotech Corporation for the sale of Cellana’s six-acre production and ...
AlgaEnergy, a Spanish biotechnology company specializing in the production and commercial applications of microalgae, and Yokogawa Electric Corporation, a leading provide...
Susan Kraemer writes in solarpaces.org that to use solar thermal energy to convert farmed algae to fuel, the solar fuels research team at Australian National University (...
Environmental Technology magazine notes that the difficulty in predicting how algae blooms will develop lies in their variform nature. With a multitude of different bloom...
42 Technology has been appointed by LabXero, acoustic particle filtration technology company, to help develop pilot-scale biomanufacturing equipment that could significan...
The Algae Biomass Organization (ABO) reports the introduction of the Algae Agriculture Act of 2018 (H.R. 5373), a bill that would give algae cultivators and harvesters ma...
Julianna Photopoulos writes in Horizon EU Research and Innovation magazine that UK start-up Skipping Rocks Lab aims to use natural materials extracted from plants and sea...
How did plants make the evolutionary jump from water to land? Scientists think that green algae are their water-living ancestors, but we are not sure how the transition t...
Foodbev.com reports that French marine ingredients company Algaia will install a new specialty seaweed extract unit at its facility in Brittany, France, after securing €4...
Amy Thompson writes in Space.com that SpaceX successfully launched its 15th Space Station cargo-resupply mission on Friday, June 29; carrying a payload of experiments des...
Cyanotech Corporation, a Kailua Kona, Hawaii-based leader in high-value nutrition and health products made from algae, has announced financial results for the first quart...