Innovations

Cultivating ocean seaweed using advanced textiles

July 12, 2013
AlgaeIndustryMagazine.com

The AT~SEA project aims to make mass cultivation of seaweeds in Europe’s near-shore locations technically and economically feasible.

The AT~SEA project aims to make mass cultivation of seaweeds in Europe’s near-shore locations technically and economically feasible.

Europe’s first trials of seaweed cultivation in the open ocean using advanced textiles were completed this month. The cutting edge textiles have been developed specifically for large-scale cultivation of seaweed for biomaterials and biofuels in coastal areas.

Part of a 3-year European project called AT~SEA, the textiles have been subjected to simultaneous trials in inshore waters off the coasts of Norway, Scotland and Ireland. These locations were chosen to expose the textiles to different oceanographic, environmental and climatic conditions on a latitudinal gradient.

“The AT~SEA project aims to make mass cultivation of seaweeds in Europe’s near-shore locations technically and economically feasible by creating textile substrates that can endure the harsh conditions that they are exposed to as the seaweed grows,” said Bert Groenendaal of Sioen Industries and coordinator of the AT~SEA project. The same materials have been used in each of the trials and the same species of seaweed grown on them to get a European view of how these textiles perform in varying conditions.

Following the trials the 11 project partners, which include businesses, industry and research institutes, will assess which textiles offer the optimal performance across Europe. On a tight schedule, these results will lead to the manufacture of a second generation of specifically designed textiles in time for the start of the next growing season this coming autumn.

Research in to the development of economically and environmentally viable production of biomaterials and biofuels (methane and ethanol) from seaweed has been ongoing for some years. It has been established that mass harvesting of wild growing seaweed is not economically viable in Europe where labor costs are high and that harvesting of beach cast seaweed is detrimental to coastal ecosystems and is unlikely to be reliably sustainable on a large scale.

The textiles being trialled are a mix of woven, nonwoven and 3D layered fabrics based on advanced fibrous and fibre-composite materials.

The textiles being trialled are a mix of woven, nonwoven and 3D layered fabrics based on advanced fibrous and fibre-composite materials.

But seaweed biomass remains a good alternative as a source of non-oil based materials such as biofuels, biopolymers, pigments, anti-oxidants and other chemical compounds that can be derived from seaweed.

Many macroalgae naturally grow very quickly, from single microscopic cells to 2m-long adults in six to eight months. The AT~SEA project has brought together European leaders in technical textiles, offshore engineering and marine biology to make the production of marine based chemicals and biofuels viable, feasible and a reality.

The project aims to make mass cultivation in inshore locations feasible by creating growth substrates that can endure the tests of a constantly wet, salty, moving, sometimes raging sea on which to grow the seaweed. The textiles being trialled are a mix of woven, nonwoven and 3D layered fabrics based on advanced fibrous and fibre-composite materials. The textiles may also be coated or modified to encourage the growth of a particular species.

Meanwhile the project is developing other materials for mooring and positioning the cultivation textiles with possible applications in many marine industries. These advanced textile-based cables and connections will be engineered to be robust, durable and with high tensile strength to survive near-shore and offshore conditions.

The third part of the project is to design flexible and lightweight tanks for storing and transporting harvested seaweed, for housing offshore seaweed hatcheries, and for cleaning and maintaining the cultivation textile ropes.

For more information on the AT~SEA project

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Natural carotenoid specialists Piveg Inc., with production facilities based in Celaya, Central Mexico, has announced immediate availability of natural astaxanthin materia...
In a global scenario where increasing attention is being directed towards issues of sustainability and limited food supplies, algal sources offer immense scope for the ra...
Libourne, France-based Fermentalg, an industrial biotechnology company that specializes in the production of oils and proteins derived from microalgae, has completed a su...
As the number of photobioreactors in an algae growing operation increases, there is a need for both autonomous control and monitoring of individual PBRs, as well as centr...
Algenist®, Solazyme’s anti-aging skincare brand featuring microalgae, has announced its launch in Nordstrom locations throughout the United States. The launch into Nordst...
A team of six University of Calgary researchers has been awarded funding for their project, Cost Effective Biotechnology for Carbon Capture and Re-Use, based on the conce...
Santa Fe Community College has been awarded a $50,000, SEED Infrastructure Grant from the Experimental Program to Stimulate Competitive Research (EPSCoR), for commercial ...
By sending algae into space, a U.S. Department of Agriculture (USDA) scientist and his team will be able to study some of the key mechanisms that control plant growth and...
A new, outdoor system at the University of Dayton Research Institute has been producing a high volume of algae since its installation in the summer of 2013, even through ...
A University of New South Wales (UNSW)-led team of researchers has discovered how algae that survive in very low levels of light are able to switch on and off a weird qua...
The Guardian reports that Prince Edward Island (P.E.I.), Canada-based Solarvest has created an inventive system utilizing a specific algal strain to grow and produce EPA ...
Starting in the early 70s, agencies in the former USSR invested more than 20,000 person-years of research and development to produce Bio-Algae Concentrates (BAC) that hel...
Steven Mufson reports for the Washington Post that Algenol Biofuels estimates hackers have attempted to break into its computers 39 million times in four months this year...
Matthew Carr was recently named executive director of the Algae Biomass Organization (ABO), the leading trade association for the algae industry. His presence will soon b...
Chase Ezell writes in Earth911.com about the irony of Algenol’s biggest friction source on the way to marketing their carbon reducing algal-based ethanol being — the EPA ...
Portuguese cement facility, Secil, and microalgae biotechnology company, A4F, also based in Portugal, have formed AlgaFarm, a joint venture to develop the use of cement f...
James “Jamie” Levine took over the reigns at Sapphire Energy in July of this year as former President and CEO Cynthia “CJ” Warner stepped down, retaining her role as chai...
With their new CO₂ processing-platform called AstaCos, AlgaeBiotech can produce waxy particles of only 50-100 µm in size with a loading of 25% astaxanthin oleoresin. The ...