Click here for more information about Algenuity
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Research

Converting algal squalene to transportation fuels

June 18, 2015
AlgaeIndustryMagazine.com

Aurantiochytrium 18W-13a (left) and squalene (right). Photo by Prof. Makoto M. Watanabe at University of Tsukuba.

Aurantiochytrium 18W-13a (left) and squalene (right). Photo by Prof. Makoto M. Watanabe at University of Tsukuba.

Anew method of converting squalene – which is produced by microalgae – to gasoline or jet fuel, has been developed by the Japanese research group of Prof. Keiichi Tomishige and Dr. Yoshinao Nakagawa from Tohoku University’s Department of Applied Chemistry, and Dr. Hideo Watanabe from the University of Tsukuba.

This study is part of a research project titled “Next-generation Energies for Tohoku Recovery. Task 2: R&D on using algae biofuels.” The project attempts to make use of oil-producing algae in wastewater treatment.

The study has its origins in March 2011, when the Great Eastern Japan Earthquake hit the Sendai area, destroying the city’s wastewater treatment system. In the aftermath, Tohoku University, the University of Tsukuba and Sendai City got together to develop a next-generation wastewater treatment system that cleans wastewater and produces oil simultaneously.

Squalene is a “heavy oil” range of hydrocarbon. It is currently gathered from deep-sea sharks and used as a component of cosmetics. However, wastewater-derived squalene is not suitable for such sensitive uses and has little demand. Most uses of oil, such as gasoline and jet fuels, require reforming. This study focuses on the development of the reforming method most suited to algal oil.

The new method developed uses a highly dispersed ruthenium catalyst supported on cerium oxide. Squalane – which is easily obtained from squalene – reacts with hydrogen over this catalyst, producing smaller hydrocarbons. The produced hydrocarbons are composed of only branched alkanes with simple distribution and do not contain toxic aromatics. These molecules have high stability and low freezing points, features very different from the hydrocarbons obtained by conventional petroleum refinery.

(A): Distribution of products in carbon number from squalane hydrogenolysis over ruthenium supported on cerium oxide catalyst. (B): Positions of C-C dissociation in squalane hydrogenolysis. The C14-16 component is suitable for jet fuel. C5-C10 is the gasoline-range. The distribution can be changed by the reaction time.

(A): Distribution of products in carbon number from squalane hydrogenolysis over ruthenium supported on cerium oxide catalyst. (B): Positions of C-C dissociation in squalane hydrogenolysis. The C14-16 component is suitable for jet fuel. C5-C10 is the gasoline-range. The distribution can be changed by the reaction time.

The ruthenium catalyst was prepared by mildly decomposing the ruthenium precursor at 300°C under inert atmosphere after impregnation. This procedure led to sub-nanometer-sized ruthenium particles supported on cerium oxide.

Squalane, obtained by the hydrogenation of squalene, was treated with this catalyst and hydrogen at 60 atm and 240°C to produce smaller hydrocarbons. This reaction did not produce toxic aromatics at all. The C-C bonds located between the methyl branches were selectively dissociated, and branched alkanes were produced without the loss of branches.

Branched hydrocarbons are good components for gasoline and jet fuels because of the high octane number, low freezing point and good stability. Other noble metal catalysts were also tested, but the results were inferior to the sub-nanometer-sized ruthenium on cerium oxide catalyst in terms of activity and selectivity.

The conventional catalyst, the combination of platinum and strong solid acid, produces a very complex mixture of products because of acid-catalyzed isomerization. In this catalyst system, the deposition of carbonaceous solid on the catalyst is negligible, while it is often problematic in many catalytic reactions in petroleum refinery. The catalyst was reusable four times without loss of performance.

This catalytic system makes good use of the squalene’s branched structure, while conventional methods are suitable to straight-chain molecules in petroleum. In the future, this catalytic conversion method can be applied to real wastewater samples and other important algal hydrocarbons, such as those from Botryococcus braunii.

The detailed results of the research were published by Wiley VCH in the June issue of the journal ChemSusChem.

More Like This…

HOME A.I.M. Archives

Copyright ©2010-2015 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Adoption of advanced technologies in various stages of natural astaxanthin production, such as microalgae harvesting, cultivation, extraction, and drying, have been major...
Sex self-destruction represents a fascinating new scientific mystery that includes climate chaos, ghost forests, temperature spikes, fierce storms, colossal nutrient coll...
Colorado State University scientists and Arizona State University’s Arizona Center for Algae Technology and Innovation are partners in a three-year grant of up to $3.5 mi...
Jeff Gelsky writes in Meat+Poultry that Corbion executives have given insights on how its September 29 acquisition of TerraVia Holdings Inc., an algae-based ingredients c...
Watertechonline.com reports that the All-Gas project in the El Torno treatment plant in Chiclana, in southwestern Spain, in the province of Cádiz, has started its demonst...
Trade Arabia reports that the Oman Centre for Marine Biotechnology (OCMB) recently signed a memorandum of understanding with Swedish Algae Factory to support the domestic...
42 Technology has been appointed by LabXero, acoustic particle filtration technology company, to help develop pilot-scale biomanufacturing equipment that could significan...
The Algae Biomass Organization (ABO) reports the introduction of the Algae Agriculture Act of 2018 (H.R. 5373), a bill that would give algae cultivators and harvesters ma...
Judith Lewis Mernit writes in e360.yale.edu that an experiment being conducted by animal science professor Ermias Kebreab at the University of California, Davis, is testi...
Sophie Kevany writes in Decanter.com that a group of vineyards in France’s Bordeaux and Cognac regions are exploring whether algae can be used to prevent the fungal infec...
San Diego, CA and Kailua-Kona, HI-based Cellana, Inc. has signed an Asset Purchase Agreement with Cyanotech Corporation for the sale of Cellana’s six-acre production and ...
Milenio.com reports that BiomiTech, a Mexican company, won a prestigious innovation award for its air purification system at the Contamination Expo Series 2018 held in Bi...