Click here for more information about Algenuity
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Research

Converting algal squalene to transportation fuels

June 18, 2015
AlgaeIndustryMagazine.com

Aurantiochytrium 18W-13a (left) and squalene (right). Photo by Prof. Makoto M. Watanabe at University of Tsukuba.

Aurantiochytrium 18W-13a (left) and squalene (right). Photo by Prof. Makoto M. Watanabe at University of Tsukuba.

Anew method of converting squalene – which is produced by microalgae – to gasoline or jet fuel, has been developed by the Japanese research group of Prof. Keiichi Tomishige and Dr. Yoshinao Nakagawa from Tohoku University’s Department of Applied Chemistry, and Dr. Hideo Watanabe from the University of Tsukuba.

This study is part of a research project titled “Next-generation Energies for Tohoku Recovery. Task 2: R&D on using algae biofuels.” The project attempts to make use of oil-producing algae in wastewater treatment.

The study has its origins in March 2011, when the Great Eastern Japan Earthquake hit the Sendai area, destroying the city’s wastewater treatment system. In the aftermath, Tohoku University, the University of Tsukuba and Sendai City got together to develop a next-generation wastewater treatment system that cleans wastewater and produces oil simultaneously.

Squalene is a “heavy oil” range of hydrocarbon. It is currently gathered from deep-sea sharks and used as a component of cosmetics. However, wastewater-derived squalene is not suitable for such sensitive uses and has little demand. Most uses of oil, such as gasoline and jet fuels, require reforming. This study focuses on the development of the reforming method most suited to algal oil.

The new method developed uses a highly dispersed ruthenium catalyst supported on cerium oxide. Squalane – which is easily obtained from squalene – reacts with hydrogen over this catalyst, producing smaller hydrocarbons. The produced hydrocarbons are composed of only branched alkanes with simple distribution and do not contain toxic aromatics. These molecules have high stability and low freezing points, features very different from the hydrocarbons obtained by conventional petroleum refinery.

(A): Distribution of products in carbon number from squalane hydrogenolysis over ruthenium supported on cerium oxide catalyst. (B): Positions of C-C dissociation in squalane hydrogenolysis. The C14-16 component is suitable for jet fuel. C5-C10 is the gasoline-range. The distribution can be changed by the reaction time.

(A): Distribution of products in carbon number from squalane hydrogenolysis over ruthenium supported on cerium oxide catalyst. (B): Positions of C-C dissociation in squalane hydrogenolysis. The C14-16 component is suitable for jet fuel. C5-C10 is the gasoline-range. The distribution can be changed by the reaction time.

The ruthenium catalyst was prepared by mildly decomposing the ruthenium precursor at 300°C under inert atmosphere after impregnation. This procedure led to sub-nanometer-sized ruthenium particles supported on cerium oxide.

Squalane, obtained by the hydrogenation of squalene, was treated with this catalyst and hydrogen at 60 atm and 240°C to produce smaller hydrocarbons. This reaction did not produce toxic aromatics at all. The C-C bonds located between the methyl branches were selectively dissociated, and branched alkanes were produced without the loss of branches.

Branched hydrocarbons are good components for gasoline and jet fuels because of the high octane number, low freezing point and good stability. Other noble metal catalysts were also tested, but the results were inferior to the sub-nanometer-sized ruthenium on cerium oxide catalyst in terms of activity and selectivity.

The conventional catalyst, the combination of platinum and strong solid acid, produces a very complex mixture of products because of acid-catalyzed isomerization. In this catalyst system, the deposition of carbonaceous solid on the catalyst is negligible, while it is often problematic in many catalytic reactions in petroleum refinery. The catalyst was reusable four times without loss of performance.

This catalytic system makes good use of the squalene’s branched structure, while conventional methods are suitable to straight-chain molecules in petroleum. In the future, this catalytic conversion method can be applied to real wastewater samples and other important algal hydrocarbons, such as those from Botryococcus braunii.

The detailed results of the research were published by Wiley VCH in the June issue of the journal ChemSusChem.

More Like This…

HOME A.I.M. Archives

Copyright ©2010-2015 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Carl Zimmer writes in The New York Times about a team of Australian scientists studying how climate change will alter ecosystems – by using miniature ecosystems, called m...
Monica Jain of Fish 2.0 writes in National Geographic about how the algae brand is about to undergo an image makeover, and may soon seem flat-out glamorous — once again. ...
David Erickson writes in the (Montana) Missoulian that Clearas Water Recovery, a Missoula tech company formed eight years ago, has developed a patented process to use alg...
The recent announcement by the U.S. Department of Energy (DOE) of three projects to receive up to $8 million, aimed at reducing the costs of producing algal biofuels and ...
UC San Diego students and researchers have produced the world’s first algae-based, renewable flip flops. The first prototypes of their new invention, developed over the s...
Portuguese microalgae producer, Allmicroalgae Natural Products S.A., has recently begun production of Chlorella vulgaris and other microalgae species via fermentation, wh...
The recently signed US two-year budget deal – featuring bipartisan support for a $35 per ton tax incentive for carbon captured and recycled from power plants or industria...
42 Technology has been appointed by LabXero, acoustic particle filtration technology company, to help develop pilot-scale biomanufacturing equipment that could significan...
At the Technical University of Denmark (DTU), Science Nordic.com reports, researchers are investigating bioluminescent algae, to determine whether bioluminescent organism...
Foodbev.com reports that French marine ingredients company Algaia will install a new specialty seaweed extract unit at its facility in Brittany, France, after securing €4...
Hayley Dunning writes from the Imperial College of London that a new discovery has changed our understanding of the basic mechanism of photosynthesis and should rewrite t...
Amy Thompson writes in Space.com that SpaceX successfully launched its 15th Space Station cargo-resupply mission on Friday, June 29; carrying a payload of experiments des...