Research

Climate change clues from ancient marine algae

February 14, 2013
AlgaeIndustryMagazine.com

Fossil (left) and modern (right) coccolithophore cells of species Toweius pertusus and Coccolithus pelagicus

Fossil (left) and modern (right) coccolithophore cells of species Toweius pertusus and Coccolithus pelagicus. Courtesy of Paul Bown, UCLls

Anew study, involving researchers from the University of Southampton, has found that microscopic ocean algae called coccolithophores are providing clues about the impact of climate change both now and many millions of years ago.
 The study found that their response to environmental change varies between species, in terms of how quickly they grow.

Coccolithophores, a type of plankton, are not only widespread in the modern ocean but they are also prolific in the fossil record because their tiny calcium carbonate shells are preserved on the seafloor after death – the vast chalk cliffs of Dover, for example, are almost entirely made of fossilised coccolithophores.

The fate of coccolithophores under changing environmental conditions is of interest because of their important role in the marine ecosystem and carbon cycle. Due to their calcite shells, these organisms are potentially sensitive to ocean acidification, which occurs when rising atmospheric carbon dioxide (CO2) is absorbed by the ocean, increasing its acidity.

There are many different species of coccolithophore and in an article published this month in Nature Geoscience scientists reported that these algae responded in different ways to a rapid climate warming event that occurred 56 million years ago, the Palaeocene-Eocene Thermal Maximum (PETM).

The study, involving researchers from the University of Southampton, the National Oceanography Centre and University College London, found that the species Toweius pertusus continued to reproduce relatively quickly despite rapidly changing environmental conditions. This would have provided a competitive advantage and is perhaps why closely-related modern-day species considered to be its descendants, (such as Emiliana huxleyi) still thrive today.

In contrast, the species Coccolithus pelagicus grew more slowly during the period of greatest warmth and this inability to maintain high growth rates may explain why its descendants are less abundant and less widespread in the modern ocean. “This work provides us with a whole new way of looking at living and fossil coccolithophores,” says lead author Dr. Samantha Gibbs, Royal Society University Research Fellow at the University of Southampton.

By comparing immaculately preserved and complete fossil cells with modern coccolithophore cells, the researchers could interpret how different species responded to the sudden increase in environmental change at the PETM, when atmospheric CO2 levels increased rapidly and the oceans became more acidic.

Lead author on the research, Dr. Samantha Gibbs, Royal Society University Research Fellow at the University of Southampton

Lead author on the research, Dr. Samantha Gibbs, Royal Society University Research Fellow at the University of Southampton

“We use knowledge of how coccolithophores build their calcite skeletons in the modern ocean to interpret how climate change 56 million years ago affected the growth of these microscopic plankton,” adds co-author Dr. Alex Poulton, a Research Fellow at the National Oceanography Centre. “This is a significant step forward and allows us to view fossils as cells rather than dead ‘rocks.’ Through this we can begin to understand the environmental controls on oceanic calcification, as well as the potential effects of climate change and ocean acidification.”

The study was primarily supported by the UK Ocean Acidification Research Programme, which is jointly funded by the Natural Environment Research Council (NERC), the Department of Environment, Food and Rural Affairs (Defra) and the Department of Energy and Climate Change (DECC).

—courtesy University of Southampton

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
University of Adelaide researchers are using nanotechnology and the fossils of diatoms to develop a novel chemical-free and resistance-free way of protecting stored grain...
Valensa International and Contract Biotics have announced that Contract Biotics has started construction of an additional six acres of algae production units at the compa...
Algatechnologies (“Algatech”), Israel, has announced a more than 100% expansion of its production capacity of AstaPure® brand natural astaxanthin. This doubling of capaci...
Libourne, France-based Fermentalg, an industrial biotechnology company that specializes in the production of oils and proteins derived from microalgae, has completed a su...
Students from three Arizona universities will demonstrate their algae research projects at an Innovation Showcase May 1, in Arizona State University’s Sun Devil Fitness C...
Yereth Rosen reports in the Anchorage Daily News that scientists at North Carolina State University’s Plants for Human Health Institute have found extremely high levels o...
Santa Fe Community College has been awarded a $50,000, SEED Infrastructure Grant from the Experimental Program to Stimulate Competitive Research (EPSCoR), for commercial ...
Algal oil represents one of the significant segments within the omega-3 polyunsaturated fatty acid (PUFA) ingredients market. Specifically, docosahexaenoic acid (DHA) is ...
Kazuaki Nagata reports from Japan that while the Fukushima nuclear disaster has prompted vigorous discussion about alternative energy in Japan, there is a lack of a paral...
Gilbert, AZ-based Heliae has announced a partnership with Sincere Corporation, a Japanese waste management and recycling company, to form a joint venture and develop a co...
Algae Industry Magazine is pleased to announce a new Algae 101 series by our popular blogger, Mark Edwards, Professor, Arizona State University. The Algae Solutions to Na...
Kyae Mone Win reports in the Myanmar Times that spirulina has been harvested from Twin Daung lake in Sagaing’s Bu Ta Lin township for over a decade, but climate change an...
Algae manufacturer Cyanotech Corporation has announced implementing three major initiatives to improve Astaxanthin production at their Kailua Kona, Hawaii-based cultivati...
Steven Mufson reports for the Washington Post that Algenol Biofuels estimates hackers have attempted to break into its computers 39 million times in four months this year...
Channelnewsasia.com reports on three young Spaniards who harvest seaweed, a culinary delicacy, as a way for them to stay out of Spain’s troubled financial waters. 35-year...
Using a combination of satellite imagery and laboratory experiments, researchers have evidence showing that viruses infecting those algae are driving the life-and-death d...
Oregon State University researchers are combining diatoms, a type of single-celled photosynthetic algae, with nanoparticles to create a sensor capable of detecting minisc...
Researchers at the Paul Scherer Institute (PSI) in Wädenswil, Switzerland, have succeeded in producing energy-rich gas from microalgae, and in doing so have demonstrated ...