go to http://www.aocs.org! Algaetech International — The Future is NowComplete Algae Monitoring System Visit  cricatalyst.com!Nexus — Leaders in Greenhouse Systems Integration

Research

Climate change clues from ancient marine algae

February 14, 2013
AlgaeIndustryMagazine.com

Fossil (left) and modern (right) coccolithophore cells of species Toweius pertusus and Coccolithus pelagicus

Fossil (left) and modern (right) coccolithophore cells of species Toweius pertusus and Coccolithus pelagicus. Courtesy of Paul Bown, UCLls

Anew study, involving researchers from the University of Southampton, has found that microscopic ocean algae called coccolithophores are providing clues about the impact of climate change both now and many millions of years ago.
 The study found that their response to environmental change varies between species, in terms of how quickly they grow.

Coccolithophores, a type of plankton, are not only widespread in the modern ocean but they are also prolific in the fossil record because their tiny calcium carbonate shells are preserved on the seafloor after death – the vast chalk cliffs of Dover, for example, are almost entirely made of fossilised coccolithophores.

The fate of coccolithophores under changing environmental conditions is of interest because of their important role in the marine ecosystem and carbon cycle. Due to their calcite shells, these organisms are potentially sensitive to ocean acidification, which occurs when rising atmospheric carbon dioxide (CO2) is absorbed by the ocean, increasing its acidity.

There are many different species of coccolithophore and in an article published this month in Nature Geoscience scientists reported that these algae responded in different ways to a rapid climate warming event that occurred 56 million years ago, the Palaeocene-Eocene Thermal Maximum (PETM).

The study, involving researchers from the University of Southampton, the National Oceanography Centre and University College London, found that the species Toweius pertusus continued to reproduce relatively quickly despite rapidly changing environmental conditions. This would have provided a competitive advantage and is perhaps why closely-related modern-day species considered to be its descendants, (such as Emiliana huxleyi) still thrive today.

In contrast, the species Coccolithus pelagicus grew more slowly during the period of greatest warmth and this inability to maintain high growth rates may explain why its descendants are less abundant and less widespread in the modern ocean. “This work provides us with a whole new way of looking at living and fossil coccolithophores,” says lead author Dr. Samantha Gibbs, Royal Society University Research Fellow at the University of Southampton.

By comparing immaculately preserved and complete fossil cells with modern coccolithophore cells, the researchers could interpret how different species responded to the sudden increase in environmental change at the PETM, when atmospheric CO2 levels increased rapidly and the oceans became more acidic.

Lead author on the research, Dr. Samantha Gibbs, Royal Society University Research Fellow at the University of Southampton

Lead author on the research, Dr. Samantha Gibbs, Royal Society University Research Fellow at the University of Southampton

“We use knowledge of how coccolithophores build their calcite skeletons in the modern ocean to interpret how climate change 56 million years ago affected the growth of these microscopic plankton,” adds co-author Dr. Alex Poulton, a Research Fellow at the National Oceanography Centre. “This is a significant step forward and allows us to view fossils as cells rather than dead ‘rocks.’ Through this we can begin to understand the environmental controls on oceanic calcification, as well as the potential effects of climate change and ocean acidification.”

The study was primarily supported by the UK Ocean Acidification Research Programme, which is jointly funded by the Natural Environment Research Council (NERC), the Department of Environment, Food and Rural Affairs (Defra) and the Department of Energy and Climate Change (DECC).

—courtesy University of Southampton

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Alltech, the animal feed giant headquartered in Lexington, Kentucky, is continuing to expand its 15,000 ton/yr. algal DHA plant in Winchester, KY, one of only two plants ...
Peter Berlin reports for France24.com that French adventurer Raphaël Dinelli plans to fly across the Atlantic in 2015 in a plane powered only by algae and sunshine. Dinel...
University of Adelaide researchers are using nanotechnology and the fossils of diatoms to develop a novel chemical-free and resistance-free way of protecting stored grain...
Scientists at the Energy Department’s National Renewable Energy Laboratory (NREL) have demonstrated that just two of six iron-sulfur-containing ferredoxins in a represent...
One of 12 winners of the 2014 Lexus Design Award, the Ooho algae balloon was created by three London-based designers to contribute a solution to the rising number of plas...
Algae is being discussed at the heart of EXPO Milano 2015, the international event that has existed since 1851, spawning world shaping themes and icons, such as the Eiffe...
Libourne, France-based Fermentalg, an industrial biotechnology company that specializes in the production of oils and proteins derived from microalgae, has completed a su...
Students from three Arizona universities will demonstrate their algae research projects at an Innovation Showcase May 1, in Arizona State University’s Sun Devil Fitness C...
A series of articles by Stephen Mayfield and the UCSD Laboratory deserve recognition for their articles on algae-based medicines for malaria and cancer. Mayfield and his ...
Although the use of whole microalgae in animal diets has long been studied, the 
de-fatted biomass of microalgal species, derived from biofuel production research, has on...
By sending algae into space, a U.S. Department of Agriculture (USDA) scientist and his team will be able to study some of the key mechanisms that control plant growth and...
In Phys.Org, Yu Yonehara notes the breakthrough research from the Tokyo Institute of Technology on the connection between early marine algae and the development of terres...
A new, outdoor system at the University of Dayton Research Institute has been producing a high volume of algae since its installation in the summer of 2013, even through ...
Four years after the first optimistic calculations, the experimental cultivation of algae at Wageningen University in the Netherlands appears to be meeting expectations. ...
Kazuaki Nagata reports from Japan that while the Fukushima nuclear disaster has prompted vigorous discussion about alternative energy in Japan, there is a lack of a paral...
Algae Industry Magazine is pleased to announce a new Algae 101 series by our popular blogger, Mark Edwards, Professor, Arizona State University. The Algae Solutions to Na...
A recent discovery in the multicellular green alga, Volvox carteri,has revealed the origin of male and female sexes, showing how they evolved from a more primitive mating...
Biofuels derived from the oils produced by algae may offer a low-cost sustainable alternative to fossil fuels. To achieve this goal, optimization of cost effective strate...