twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Technology

CEC issues final report on OMEGA System

December 1, 2013
AlgaeIndustryMagazine.com

Rendering of an OMEGA installation at a coastal urban wastewater treatment center

Rendering of an OMEGA installation at a coastal urban wastewater treatment center

The California Energy Commission (CEC) has just issued their “final” report on the Offshore Membrane Enclosures for Growing Algae (OMEGA) approach to algae cultivation and wastewater remediation. Outlining the research findings for the multi-year OMEGA project, the report is available for download on the CEC’s website.

According to the report’s Primary Author, Dr. Jonathon Trent, “The report summarizes most of the work we did over the last few years, although it does not include our more detailed techno-economic analysis, nor does it include our research on wastewater recovery as potable water (Desalgae). These latter two results will be published soon…”

The goal of the OMEGA project was to demonstrate that an ocean deployed, floating PBR inoculated with freshwater algae can produce sufficient lipids for conversion to fuel to be economically feasible and appropriately scalable so the technology may be transferred to commercial or other government sectors.

OMEGA photobioreactor tubes with swirl vanes

OMEGA photobioreactor tubes with swirl vanes

The researchers in this study took the position that, at least for coastal cities, the most plausible answer to the question of how to make the massive amounts of biofuels needed to displace significant quantities of fossil fuels without competing with agriculture will be to 1) use microalgae as the feedstock, 2) grow the microalgae on domestic wastewater, and 3) locate the cultivation system offshore in the vicinity of existing wastewater outfalls.

The feasibility of an enormous offshore algae cultivation system will depend on overcoming major challenges inherent in algae cultivation, in finding appropriate sites and engineering offshore systems that can cope with extreme conditions at these sites, and in many countries, navigating the environmental and political bureaucracies, which may pose the greatest difficulty in testing the new technology. It is well established that the economic challenges for biofuels are daunting if not impossible to overcome.

In the OMEGA system, oil-producing freshwater algae are grown in flexible, clear plastic PBRs attached to a floating infrastructure anchored offshore in a protected bay.  Wastewater and CO2 from coastal facilities provide water and nutrients. The surrounding seawater controls the temperature inside the PBRs and kills algae that escape from the system.

The salt gradient between seawater and wastewater drives forward osmosis, to concentrate nutrients and facilitate algae harvesting. The OMEGA infrastructure also supports aquaculture and provides surfaces for solar panels and access to offshore wave generators and wind turbines. Integrating algae cultivation with wastewater treatment, CO2 sequestration, aquaculture, and other forms of alternative energy creates an ecology of technologies in which the wastes from one part of the system are resources for another.

The OMEGA team consisted of scientists and engineers from a variety of public and private organizations. The team attempted to maintain an “open source” model in the dissemination of their results and welcomed contributions from colleagues and collaborators with interests in marine biology, ecology, engineering, environmental studies, economics, and public policy.

The project was divided into three phases. In the first phase, ideas about possible OMEGA materials and designs, deployment and operation, as well as environmental constraints and concerns, were considered and discussed, which led to technical memoranda assembled into a report.

In the second phase, a functional floating 110-liter prototype system was developed in a seawater tank at a research facility in Santa Cruz and then scaled up to 1,600 liters in seawater tanks at a wastewater treatment plant in San Francisco. In the third phase, the results were evaluated and reported in a series of technical papers based on experiments and analyses in phases I & II.

According to the researchers, economic and financial evaluations, based on the limited data available, show that OMEGA compares favorably with other algae production systems. The advantage of OMEGA is that it eliminates land use, provides convenient access to wastewater and advanced wastewater treatment, contributes to carbon capture and sequestration (CCS), and creates a multifunctional offshore platform.

See the full report

More Like This…

HOME A.I.M. Archives

Copyright ©2010-2017 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

Visit our 2017 International Reader’s Poll Platinum Sponsors

bigelow mbiolp_link sfcc

From The A.I.M. Archives

— Refresh Page for More Choices
Scientists at Dartmouth College, in Hanover, New Hampshire, have discovered that marine microalgae can completely replace the wild fish oil currently used to feed tilapia...
Northwestern University researchers have developed a quantitative tool that might help bring back coral from the brink of extinction. The novel algorithm could help asses...
Bioenergy-news.com reports that Volkswagen showcased its algae biogas-powered vehicle at a biogas project based in El Torno Chiclana, a town in south-west Spain. The test...
Prior posts highlight the value proposition for building a Green Friendship Bridge of algae microfarms in lieu of 1%, (13 miles) of Donald Trump’s proposed border wall wi...
Tyler Treadway of TCPalm reports on technology joining the fight in response to the Florida algae blooms. He watches, as water from a boat basin topped with several inche...
Natural Icelandic astaxanthin supplier, ArcticFarma, has reached an agreement with a subsidiary of China-based BGG to rename itself in order to avoid market confusion. “B...
Tafline Laylin writes for Inhabitat.com about the elegant solution that Romanian designer Alexandru Predonu has conceived that uses solar energy to power a rotating desal...
Algae Health Sciences, Inc., a subsidiary of BGG, has announced that it has submitted a New Dietary Ingredient (NDI) to the US FDA for its flagship product AstaZine® Natu...
Discovering which algae species is best suited to make biofuel is no small task. Researchers have tried to evaluate algae in test tubes, but often find lab results don’t ...
Dan Wood, at the University of Connecticut, writes that assistant extension educator of marine aquaculture at UConn’s Avery Point Campus, Anoushka Concepcion, spoke about...
Matt Stultz writes in MakeZine.com about Algix’ unique 3-D printing filament created with a combination of algae and Polylactic Acid (PLA) – a biodegradable thermoplastic...
Qualitas Health, an algae-based health and nutrition company headquartered in Texas, has announced a long term, strategic partnership with commercial crop producer Green ...