Technology

CEC issues final report on OMEGA System

December 1, 2013
AlgaeIndustryMagazine.com

Rendering of an OMEGA installation at a coastal urban wastewater treatment center

Rendering of an OMEGA installation at a coastal urban wastewater treatment center

The California Energy Commission (CEC) has just issued their “final” report on the Offshore Membrane Enclosures for Growing Algae (OMEGA) approach to algae cultivation and wastewater remediation. Outlining the research findings for the multi-year OMEGA project, the report is available for download on the CEC’s website.

According to the report’s Primary Author, Dr. Jonathon Trent, “The report summarizes most of the work we did over the last few years, although it does not include our more detailed techno-economic analysis, nor does it include our research on wastewater recovery as potable water (Desalgae). These latter two results will be published soon…”

The goal of the OMEGA project was to demonstrate that an ocean deployed, floating PBR inoculated with freshwater algae can produce sufficient lipids for conversion to fuel to be economically feasible and appropriately scalable so the technology may be transferred to commercial or other government sectors.

OMEGA photobioreactor tubes with swirl vanes

OMEGA photobioreactor tubes with swirl vanes

The researchers in this study took the position that, at least for coastal cities, the most plausible answer to the question of how to make the massive amounts of biofuels needed to displace significant quantities of fossil fuels without competing with agriculture will be to 1) use microalgae as the feedstock, 2) grow the microalgae on domestic wastewater, and 3) locate the cultivation system offshore in the vicinity of existing wastewater outfalls.

The feasibility of an enormous offshore algae cultivation system will depend on overcoming major challenges inherent in algae cultivation, in finding appropriate sites and engineering offshore systems that can cope with extreme conditions at these sites, and in many countries, navigating the environmental and political bureaucracies, which may pose the greatest difficulty in testing the new technology. It is well established that the economic challenges for biofuels are daunting if not impossible to overcome.

In the OMEGA system, oil-producing freshwater algae are grown in flexible, clear plastic PBRs attached to a floating infrastructure anchored offshore in a protected bay.  Wastewater and CO2 from coastal facilities provide water and nutrients. The surrounding seawater controls the temperature inside the PBRs and kills algae that escape from the system.

The salt gradient between seawater and wastewater drives forward osmosis, to concentrate nutrients and facilitate algae harvesting. The OMEGA infrastructure also supports aquaculture and provides surfaces for solar panels and access to offshore wave generators and wind turbines. Integrating algae cultivation with wastewater treatment, CO2 sequestration, aquaculture, and other forms of alternative energy creates an ecology of technologies in which the wastes from one part of the system are resources for another.

The OMEGA team consisted of scientists and engineers from a variety of public and private organizations. The team attempted to maintain an “open source” model in the dissemination of their results and welcomed contributions from colleagues and collaborators with interests in marine biology, ecology, engineering, environmental studies, economics, and public policy.

The project was divided into three phases. In the first phase, ideas about possible OMEGA materials and designs, deployment and operation, as well as environmental constraints and concerns, were considered and discussed, which led to technical memoranda assembled into a report.

In the second phase, a functional floating 110-liter prototype system was developed in a seawater tank at a research facility in Santa Cruz and then scaled up to 1,600 liters in seawater tanks at a wastewater treatment plant in San Francisco. In the third phase, the results were evaluated and reported in a series of technical papers based on experiments and analyses in phases I & II.

According to the researchers, economic and financial evaluations, based on the limited data available, show that OMEGA compares favorably with other algae production systems. The advantage of OMEGA is that it eliminates land use, provides convenient access to wastewater and advanced wastewater treatment, contributes to carbon capture and sequestration (CCS), and creates a multifunctional offshore platform.

See the full report

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Hammenhög, Sweden-based agribusiness Simris Alg has announced the launch of its first consumer products. The algae farmers’ exclusive omega-3 supplements and superfoods w...
None of us would be alive if sperm cells didn’t know how to swim, or if the cilia in our lungs couldn’t prevent fluid buildup. But we know very little about the dynamics ...
The U.S. Environmental Protection Agency (EPA) is developing an early warning indicator system using historical and current satellite data to detect algal blooms. EPA res...
Sami Zaatari writes for the Middle East’s Gulf News that Abu Dhabi’s coastal sabkhas – the Arabic phonetic translation for salt flats – hold great potential for solar pow...
Simris Alg, a pioneering agribusiness producing omega-3 from farmed algae, has been declared one of Sweden’s 33 hottest companies in new technology. The renowned list is ...
Tubular glass photobioreactor (PBR) systems protect algae from harmful environmental factors, keeping strains safer from bio-contamination. The glass tubing itself can be...
Scientists from the J. Craig Venter Institute (JCVI), a not-for-profit genomic research organization in La Jolla, California, have published a paper outlining new synthet...
Scientific representatives from the EnAlgae consortium are announcing preliminary results this week from a key algal carbon capture project in the works at Britain’s larg...
SciDev.Net’s South Asia desk reports that Indian scientists working on producing biofuel from algae cultured in municipal wastewater are enthused by the findings of a rec...
Japan’s IHI Corporation has announced that they have succeeded in stably cultivating a modified high-output algal strain in a 1,500 square meter open pond in Kagoshima, K...
There are around 4500 dairy farms in Victoria, Australia, according to Business Victoria. Together they produced about 86 per cent of Australia’s dairy product exports, w...
Earthrise Nutritionals, a wholly owned subsidiary of Tokyo, Japan’s DIC Corporation, is on schedule to complete construction in August, 2015, of a new extraction plant fo...
OriginClear Inc. and partner AlgEternal have announced that, based on AlgEternal’s field tests, they believe their pure algae concentrate, harvested with OriginClear tech...
Tom Redmond and Yuko Takeo report for Bloomberg.com that, after 10 years of developing algae as a nutritional supplement generating $37.8 million in annual revenue, Japan...
Studies conducted by EnAlgae partners in Ireland, France and Belgium point the way to seaweed being a viable and sustainable feedstock for the future in North West Europe...