Research

Brookhaven researchers Jilian Fan, Changcheng Xu, and Chengshi Yan with cultures of algae that were shown to increase oil production in response to excess carbon.

Brookhaven researchers Jilian Fan, Changcheng Xu, and Chengshi Yan with cultures of algae that were shown to increase oil production in response to excess carbon.

Carbon Megadosing for Increased Lipids

June 20, 2012
AlgaeIndustryMagazine.com

Researchers at the U.S. Department of Energy’s Brookhaven National Laboratory, in Upton, NY, have demonstrated that ramping up algae’s overall metabolism by feeding them more carbon increases oil production as the organisms continue to grow. The findings were published online in the journal Plant and Cell Physiology on May 28, 2012.

“We are interested in algae because they grow very quickly and can efficiently convert carbon dioxide into carbon-chain molecules like starch and oils,” said Brookhaven biologist Changcheng Xu, the paper’s lead author.

But there have been some problems turning microscopic algae into oil producing factories. For one thing, when the tiny microbes take in carbon dioxide for photosynthesis, they preferentially convert the carbon into starch rather than oils. “Normally, algae produce very little oil,” Xu said.

Before the current research, the conventional wisdom for tipping the balance in favor of oil production was to starve the algae of certain key nutrients, like nitrogen. Oil output would increase, but the algae would stop growing — not ideal conditions for continuous production.

Confocal image of the algae Chlamydomonas showing the accumulation of oil droplets (golden dots). Red represents chlorophyll autofluorescence.

Confocal image of the algae Chlamydomonas showing the accumulation of oil droplets (golden dots). Red represents chlorophyll autofluorescence.

Another issue was that scientists didn’t know much about the details of oil biochemistry in algae. “Much of what we thought we knew was inferred from studies performed on higher plants,” said Brookhaven biochemist John Shanklin, a co-author who’s conducted extensive research on plant oil production. Recent studies have hinted at big differences between the microbial algae and their more complex photosynthetic relatives.

“Our goal was to learn all we could about the factors that contribute to oil production in algae, including those that control metabolic switching between starch and oil, to see if we could shift the balance to oil production without stopping algae growth,” Xu said.

The scientists grew cultures of Chlamydomonas reinhardtii — the “fruit fly” of algae — under a variety of nutrient conditions, with and without inhibitors that would limit specific biochemical pathways. They also studied a mutant Chlamydomonas that lacks the capacity to make starch. By comparing how much oil accumulated over time in the two strains across the various conditions, they were able to learn why carbon preferentially partitions into starch rather than oil, and how to affect the process.

The main finding was that feeding the algae more carbon (in the form of acetate) quickly maxed out the production of starch to the point that any additional carbon was channeled into high-gear oil production. And, most significantly, under the excess carbon condition and without nutrient deprivation, the microbes kept growing while producing oil.

“This overturns the previously held dogma that algae growth and increased oil production are mutually exclusive,” Xu said.

The detailed studies, conducted mainly by Brookhaven research associates Jilian Fan and Chengshi Yan, showed that the amount of carbon was the key factor determining how much oil was produced: more carbon resulted in more oil; less carbon limited production. This was another surprise because a lot of approaches for increasing oil production have focused on the role of enzymes involved in producing fatty acids and oils. In this study, inhibiting enzyme production had little effect on oil output.

“This is an example of a substantial difference between algae and higher plants,” said Shanklin.

In plants, the enzymes directly involved in the oil biosynthetic pathway are the limiting factors in oil production. In algae, the limiting step is not in the oil biosynthesis itself, but further back in central metabolism.

This is not all that different from what we see in human metabolism, Xu points out: Eating more carbon-rich carbohydrates pushes our metabolism to increase oil (fat) production and storage.

“It’s kind of surprising that, in some ways, we’re more like algae than higher plants are,” Xu said, noting that scientists in other fields may be interested in the details of metabolic switching uncovered by this research.

The next step for the Brookhaven team will be to look more closely at the differences in carbon partitioning in algae and plants. This part of the work will be led by co-author Jorg Schwender, an expert in metabolic flux studies. The team will also work to translate what they’ve learned in a model algal species into information that can help increase the yield of commercial algal strains for the production of raw materials for biofuels.

This research was funded by the DOE Office of Science and the DOE Office of Energy Efficiency and Renewable Energy. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States.

More Like This…

Go to HOME Page

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Don Willmott writes in Huffington Post about Nevada-based Algae Systems, which has built a test plant on Alabama's Mobile Bay to not only turn algae into diesel fuel but ...
Montague, Prince Edward Island-based Solarvest has announced that it has used its algal-based production platform to express bioactive therapeutic proteins. The proof of ...
Brian Krassenstein, writing in 3Dprint.com, goes deeper into the recent paper in Engineering in Life Sciences journal discussing the impact 3D bioprinting will have in th...
K. S. Rajgopal writes in thehindu.com about a new study that demonstrates how macroalgal biomass from Gelidiella acerosa and Gracilaria dura collected from Adri and Verav...
Sami Zaatari writes for the Middle East’s Gulf News that Abu Dhabi’s coastal sabkhas – the Arabic phonetic translation for salt flats – hold great potential for solar pow...
UC San Diego’s efforts to produce innovative and sustainable solutions to the world’s environmental problems have resulted in a partnership with the region’s surfing indu...
Murdoch University researchers are investigating whether the effluent from piggeries can be effectively treated with micro- and macroalgae so that species of the organism...
Japan’s IHI Corporation has announced that they have succeeded in stably cultivating a modified high-output algal strain in a 1,500 square meter open pond in Kagoshima, K...
While aquafarmers in Maine have been harvesting seaweed for nearly 80 years, for a variety of uses and products, in recent years wild harvests have not been able to meet ...
Studies conducted by EnAlgae partners in Ireland, France and Belgium point the way to seaweed being a viable and sustainable feedstock for the future in North West Europe...
You know algae are a great food source for you. But what are the best ways to eat it? Jami Foss writes in shape.com about 10 ways to eat algae that are common, healthy an...
Melissae Fellet reports in Chemical & Engineering News that new materials containing ultraviolet-absorbing molecules found in algae and reef-fish mucus could serve as...
Bigelow Laboratory, of East Boothbay, Maine, and the University of Mississippi have formed a five-year Strategic Inter-Institutional Partnership Agreement for collaborati...
The demand for spirulina as a natural food colorant is robust in the North America food processing industry, according to a new study by market intelligence firm Future M...
Astaxanthin has been widely used in the aquaculture industry for pigmentation of salmon, trout and shrimp; used for its antioxidant and other health benefits in the nutra...