[ad#PhycoBiosciences AIM Interview]

Research

Brown algae’s antioxidant properties investigated

September 12, 2013
AlgaeIndustryMagazine.com

Ectocarpus siliculosus growing on the marine plant Zostera  © Akira Peters, Station Biologique Roscoff

Ectocarpus siliculosus growing on the marine plant Zostera
© Akira Peters, Station Biologique Roscoff

Brown algae contain phlorotannins, aromatic (phenolic) compounds that are unique in the plant kingdom. As natural antioxidants, phlorotannins are of great interest for the treament and prevention of cancer and inflammatory, cardiovascular and neurodegenerative diseases.

Researchers at France’s Végétaux marins et biomolécules (CNRS/UPMC) laboratory at the Station biologique de Roscoff, in collaboration with two colleagues at the Laboratoire des sciences de l’Environnement MARin (Laboratory of Marine Environment Sciences) in Brest (CNRS/UBO/IFREMER/IRD) have recently described the key step in the production of these compounds in Ectocarpus siliculosus, a small brown alga model species. The study also revealed the specific mechanism of an enzyme that synthesizes phenolic compounds with commercial applications.

These findings have been patented and should make it easier to produce the phlorotannins presently used as natural extracts in the pharmaceutical and cosmetic industries. The results have also been published online on the site of the journal The Plant Cell (“Structure/Function Analysis of a Type III Polyketide Synthase in the Brown Alga Ectocarpus siliculosus Reveals a Biochemical Pathway in Phlorotannin Monomer Biosynthesis”).

Until now, extracting phlorotannins from brown algae for use in industry was a complex process, and the biosynthesis pathways of these compounds were unknown. By studying the first genome sequenced from a brown alga, the team in Roscoff identified several genes homologous to those involved in phenolic compound biosynthesis in terrestrial plants.

Among these genes, the researchers found that at least one was directly involved in the synthesis of phlorotannins in brown algae. They then inserted these genes into a bacterium, which thus produced a large quantity of the enzymes that could synthesize the desired phenolic compounds.

One of these enzymes, a type III polyketide synthase (PKS III), was studied in detail and revealed how it produces phenolic compounds. PKS III is able, for example, to synthesize phloroglucinol (notably used in antispasmodic drugs and in explosives) and other phenolic compounds with commercial applications.

Besides this mechanism, results revealed that the compounds had other biological functions in the acclimation and adaptation of brown algae to salinity stress. Knowledge of these biosynthesis pathways would allow researchers to uncover the signaling mechanisms that regulate this metabolism. It would also be useful for understanding the biological and ecological functions of these compounds in other brown algae that are already used commercially.

Read More

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Bioenergy-news.com reports that Volkswagen showcased its algae biogas-powered vehicle at a biogas project based in El Torno Chiclana, a town in south-west Spain. The test...
Tyler Treadway of TCPalm reports on technology joining the fight in response to the Florida algae blooms. He watches, as water from a boat basin topped with several inche...
The water sample taken from the St. Lucie River near the coastline of Ft. Pierce, Florida was loaded with blue-green algae when it arrived in Ben Spaulding’s lab in Scarb...
Tom Lindfors writes in the New Richmond News about how the Roberts, Wisconsin, wastewater treatment plant – considered a minor utility designed to treat an average flow o...
In one of the most comprehensive studies to date, University of North Carolina at Chapel Hill researchers have sequenced the genes of a harmful algal bloom, unveiling nev...
Researchers at Iowa State University, in Ames, Iowa, are developing technology, using algae, that improves the efficiency of wastewater reclamation. The system uses verti...
Aquaculture is the fastest-growing segment in the feed industry. According to the 2017 Alltech Global Feed Survey, the aquaculture industry experienced a 12 percent incre...
Dan Wood, at the University of Connecticut, writes that assistant extension educator of marine aquaculture at UConn’s Avery Point Campus, Anoushka Concepcion, spoke about...
Matt Stultz writes in MakeZine.com about Algix’ unique 3-D printing filament created with a combination of algae and Polylactic Acid (PLA) – a biodegradable thermoplastic...
PhysOrg reports that recent efforts have been made by researchers in Japan to reduce the cost of biodiesel production by using pulsed electric fields (PEF) to extract hyd...
ExxonMobil and Synthetic Genomics Inc. have announced that, in joint research into advanced biofuels, they have modified an algal strain to more than double its oil conte...
Carlsbad-based Surftech, a stand-up paddle (SUP) and Surfboard manufacturing company has announced its collaboration with BLOOM, a materials development company, to devel...