[ad#PhycoBiosciences AIM Interview]

Research

Brown algae’s antioxidant properties investigated

September 12, 2013
AlgaeIndustryMagazine.com

Ectocarpus siliculosus growing on the marine plant Zostera  © Akira Peters, Station Biologique Roscoff

Ectocarpus siliculosus growing on the marine plant Zostera
© Akira Peters, Station Biologique Roscoff

Brown algae contain phlorotannins, aromatic (phenolic) compounds that are unique in the plant kingdom. As natural antioxidants, phlorotannins are of great interest for the treament and prevention of cancer and inflammatory, cardiovascular and neurodegenerative diseases.

Researchers at France’s Végétaux marins et biomolécules (CNRS/UPMC) laboratory at the Station biologique de Roscoff, in collaboration with two colleagues at the Laboratoire des sciences de l’Environnement MARin (Laboratory of Marine Environment Sciences) in Brest (CNRS/UBO/IFREMER/IRD) have recently described the key step in the production of these compounds in Ectocarpus siliculosus, a small brown alga model species. The study also revealed the specific mechanism of an enzyme that synthesizes phenolic compounds with commercial applications.

These findings have been patented and should make it easier to produce the phlorotannins presently used as natural extracts in the pharmaceutical and cosmetic industries. The results have also been published online on the site of the journal The Plant Cell (“Structure/Function Analysis of a Type III Polyketide Synthase in the Brown Alga Ectocarpus siliculosus Reveals a Biochemical Pathway in Phlorotannin Monomer Biosynthesis”).

Until now, extracting phlorotannins from brown algae for use in industry was a complex process, and the biosynthesis pathways of these compounds were unknown. By studying the first genome sequenced from a brown alga, the team in Roscoff identified several genes homologous to those involved in phenolic compound biosynthesis in terrestrial plants.

Among these genes, the researchers found that at least one was directly involved in the synthesis of phlorotannins in brown algae. They then inserted these genes into a bacterium, which thus produced a large quantity of the enzymes that could synthesize the desired phenolic compounds.

One of these enzymes, a type III polyketide synthase (PKS III), was studied in detail and revealed how it produces phenolic compounds. PKS III is able, for example, to synthesize phloroglucinol (notably used in antispasmodic drugs and in explosives) and other phenolic compounds with commercial applications.

Besides this mechanism, results revealed that the compounds had other biological functions in the acclimation and adaptation of brown algae to salinity stress. Knowledge of these biosynthesis pathways would allow researchers to uncover the signaling mechanisms that regulate this metabolism. It would also be useful for understanding the biological and ecological functions of these compounds in other brown algae that are already used commercially.

Read More

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
CBS Miami reports that protesters are demanding answers and action over the toxic mess in Florida — a poisonous algae bloom plaguing four counties now under a state of em...
The U.S. Department of Energy’s just released 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy summarizes the most recent estimates of pote...
Judy Siegel-Itzkovich writes in the Jerusalem Post that Dr. Iftach Yacoby and his research team at Tel Aviv University, in Israel, have genetically altered microalgae to ...
If you’re a fan of the television show “Shark Tank”, you won't want to miss the episode that airs this Friday, November 18th 9:00-10:00 p.m. EST on ABC Television, when C...
Algatechnologies Ltd (Algatech), of Kibbutz Ketura, Israel, has become part of the FoodConnects consortium, as winner of a pan-European competition for the Food4Future pr...
In one of the most comprehensive studies to date, University of North Carolina at Chapel Hill researchers have sequenced the genes of a harmful algal bloom, unveiling nev...
Aquaculture is the fastest-growing segment in the feed industry. According to the 2017 Alltech Global Feed Survey, the aquaculture industry experienced a 12 percent incre...
WesTech Engineering, Inc. and Utah State University’s Sustainable Waste-to-Bioproducts Engineering Center (SWBEC) are jointly engaged in developing processes for more eff...
David Erickson writes in the (Montana) Missoulian that Clearas Water Recovery, a Missoula tech company formed eight years ago, has developed a patented process to use alg...
Washington State University researchers have developed a biofilm reactor to grow algae more efficiently, and make the algae more viable for several industries, including ...
Memory Maninga reports for Zambia Daily Mail that in Mansa, the capital of the Luapula Province of Zambia, spirulina is being grown in ponds in the communities because of...
Colorado State University scientists and Arizona State University’s Arizona Center for Algae Technology and Innovation are partners in a three-year grant of up to $3.5 mi...