Research

Brown algae’s antioxidant properties investigated

September 12, 2013
AlgaeIndustryMagazine.com

Ectocarpus siliculosus growing on the marine plant Zostera  © Akira Peters, Station Biologique Roscoff

Ectocarpus siliculosus growing on the marine plant Zostera
© Akira Peters, Station Biologique Roscoff

Brown algae contain phlorotannins, aromatic (phenolic) compounds that are unique in the plant kingdom. As natural antioxidants, phlorotannins are of great interest for the treament and prevention of cancer and inflammatory, cardiovascular and neurodegenerative diseases.

Researchers at France’s Végétaux marins et biomolécules (CNRS/UPMC) laboratory at the Station biologique de Roscoff, in collaboration with two colleagues at the Laboratoire des sciences de l’Environnement MARin (Laboratory of Marine Environment Sciences) in Brest (CNRS/UBO/IFREMER/IRD) have recently described the key step in the production of these compounds in Ectocarpus siliculosus, a small brown alga model species. The study also revealed the specific mechanism of an enzyme that synthesizes phenolic compounds with commercial applications.

These findings have been patented and should make it easier to produce the phlorotannins presently used as natural extracts in the pharmaceutical and cosmetic industries. The results have also been published online on the site of the journal The Plant Cell (“Structure/Function Analysis of a Type III Polyketide Synthase in the Brown Alga Ectocarpus siliculosus Reveals a Biochemical Pathway in Phlorotannin Monomer Biosynthesis”).

Until now, extracting phlorotannins from brown algae for use in industry was a complex process, and the biosynthesis pathways of these compounds were unknown. By studying the first genome sequenced from a brown alga, the team in Roscoff identified several genes homologous to those involved in phenolic compound biosynthesis in terrestrial plants.

Among these genes, the researchers found that at least one was directly involved in the synthesis of phlorotannins in brown algae. They then inserted these genes into a bacterium, which thus produced a large quantity of the enzymes that could synthesize the desired phenolic compounds.

One of these enzymes, a type III polyketide synthase (PKS III), was studied in detail and revealed how it produces phenolic compounds. PKS III is able, for example, to synthesize phloroglucinol (notably used in antispasmodic drugs and in explosives) and other phenolic compounds with commercial applications.

Besides this mechanism, results revealed that the compounds had other biological functions in the acclimation and adaptation of brown algae to salinity stress. Knowledge of these biosynthesis pathways would allow researchers to uncover the signaling mechanisms that regulate this metabolism. It would also be useful for understanding the biological and ecological functions of these compounds in other brown algae that are already used commercially.

Read More

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
As of March 1, 2015, bbi-biotech GmbH, of Berlin, Germany, has begun integrating IGV Biotech GmbH’s photobioreactors into its own life science product portfolio. A former...
Cellana, Inc., with operations in San Diego and Kailua-Kona, Hawaii, has announced that David Anton, Ph.D., has been appointed Chief Operating Officer and elected to the ...
K. S. Rajgopal writes in thehindu.com about a new study that demonstrates how macroalgal biomass from Gelidiella acerosa and Gracilaria dura collected from Adri and Verav...
Sebastian Rich reports on PBS Newshour about the Central African Republic city of Bangui, which has been caught in the crossfire between warring Muslim and Christian grou...
UC San Diego’s efforts to produce innovative and sustainable solutions to the world’s environmental problems have resulted in a partnership with the region’s surfing indu...
Algae.Tec has announced a collaboration agreement for the commercialization of its algae production technology with Larimar Energy SRL, of the Dominican Republic. The ene...
Murdoch University researchers are investigating whether the effluent from piggeries can be effectively treated with micro- and macroalgae so that species of the organism...
Scientific representatives from the EnAlgae consortium are announcing preliminary results this week from a key algal carbon capture project in the works at Britain’s larg...
SciDev.Net’s South Asia desk reports that Indian scientists working on producing biofuel from algae cultured in municipal wastewater are enthused by the findings of a rec...
John O’Renick, in this insightful piece from the Portland (Oregon) Tribune, writes about the problems we create from treating waste streams as garbage to be disposed of i...
While aquafarmers in Maine have been harvesting seaweed for nearly 80 years, for a variety of uses and products, in recent years wild harvests have not been able to meet ...
Joule has announced the issuance of a patent on the direct, continuous production of hydrocarbon fuels — extending its ability to target the highest-value molecules of th...
Natacha Tatu writes in Worldcrunch about a 72-year old French chef who has taken on the challenge of bringing spirulina to the malnourished youth of the Central Africa. F...
EnAlgae researchers have published an economic model to help to explore the economics of cultivating macroalgae at sea. The model and report can be found here as outputs ...
Nurit Canetti writes in Israeli Pulse that Rwandan agronomists are on a one-year visit to Israel to study various aspects of Israeli agriculture firsthand. Primarily they...