twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Research

A breakthrough in fish-free aquaculture feed?

June 5, 2016
AlgaeIndustryMagazine.com

Tilapia at Dartmouth's Organic Farm are being used in sustainable aquaculture research being conducted by Prof. Anne Kapuscinski, chair of the Environmental Studies Program. Photo: Jacob Kupferman

Tilapia at Dartmouth’s Organic Farm are being used in sustainable aquaculture research being conducted by Prof. Anne Kapuscinski, chair of the Environmental Studies Program. Photo: Jacob Kupferman

Scientists at Dartmouth College, in Hanover, New Hampshire, have discovered that marine microalgae can completely replace the wild fish oil currently used to feed tilapia, the second most farmed fish in the world and the most widely farmed in the United States.

The findings, which appear in the open-access journal PLOS ONE, are being considered a breakthrough in the quest to develop sustainable, fish-free feeds for aquaculture, the world’s fastest growing food sector. The Dartmouth study is the first report of a marine microalgae species being successfully used as a complete replacement of fish oil in feed for Nile tilapia, which thrived on the new diet and bulked up despite eating less.

Aquaculture currently uses more than 80 percent of the world’s fish oil and fishmeal, which are extracted from small ocean-caught fish, leading to over-fishing of these species. Pallab Sarker, the new study’s lead author, previously found that salmon aquaculture consumes more wild fish – in the form of protein and oil from open-ocean fishes like mackerel, herring, anchovies and menhaden – than it produces in the form of edible meat from farmed fish, resulting in a net removal of fish on a global basis.

Scientists have reported success in partially or totally replacing fish oil with vegetable oil in many farmed-fish species, but studies show that vegetable oil reduces the nutritional quality of the fish flesh. In contrast to vegetable oil, microalgae are much higher in essential omega-3 fatty acids, which are important for maintaining fish health and imparting neurological, cardiovascular and anti-cancer benefits to humans.

In their new study, the Dartmouth researchers looked at juvenile Nile tilapia, a species naturally evolved to eat microalgae as part of its diet. The team conducted a feeding experiment with dried Schizochytrium, a species of marine microalgae rich in health-promoting omega-3 fatty acids. Their goal was to determine the optimum level of fish-oil substitution (partial or complete) for good growth of tilapia.

When the researchers fully replaced fish oil with the microalgae, they found significantly higher weight gain and better food conversion compared to a control diet containing fish oil, and no significant change in survival and growth rates among all diets. The fish-oil-free microalgae diet also had the highest content of omega-3 fatty acids in tilapia fillets.

“Our study shows that Schizochytrium is a high quality candidate for complete substitution of fish oil in juvenile Nile tilapia feeds, providing an innovative means to formulate and optimize the composition of feed while simultaneously raising feed efficiency of tilapia aquaculture,” says Dr. Sarker, a research assistant professor in Dartmouth’s Environmental Studies Program.

Dartmouth Research Assistant Professor Pallab Sarker (left) and Professor Kapucinski conduct an experiment on the use of microalgae as a sustainable feed ingredient. Credit: Dartmouth College

Dartmouth Research Assistant Professor Pallab Sarker (left) and Professor Kapucinski conduct an experiment on the use of microalgae as a sustainable feed ingredient. Credit: Dartmouth College

Co-author Anne Kapuscinski, a professor of sustainability science, says the results also point to the possibility of formulating ecologically and socially sustainable aquafeeds, with greatly reduced or no fish oil from marine fisheries and without having to switch to vegetable oils from industrially farmed crops.

Commercial realization of this potential will require advances in strategies to reduce non-renewable inputs, such as inorganic fertilizers and fossil fuels, and monetary costs of large-scale production of marine microalgae, she says.

“Feed manufacturers can explore this approach to develop aquafeeds for aquaculturists aiming to cater to the consumer willing to pay a premium for health enhanced foods,” Kapuscinski says.

“Researchers have to find the ways to cut the high production cost of microalgae in order for such nutritionally enhanced tilapia to succeed in the market. Towards this end, we are exploring ways to reduce production costs and the environmental footprint of microalgae production by using organic waste streams as a partial replacement for expensive inputs of inorganic fertilizer normally used to grow microalgae. Now that we’ve been able to fully replace fish oil in tilapia feed, our next step towards a fish-free diet is to replace fishmeal. We are now investigating combinations of different marine microalgae to achieve this goal in tilapia.”

The Dartmouth researchers are conducting similar studies in rainbow trout, which they are using as a model species for salmon farming.

Dartmouth’s Team Integrated Food Energy Systems, founded by Dr. Kapuscinski, pursues interdisciplinary research on the global emergence of integrated food-energy systems and their capacity to solve problems at the food-water-energy-climate nexus.

More Like This…

HOME A.I.M. Archives

Copyright ©2010-2017 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

Visit our 2017 International Reader’s Poll Platinum Sponsors

bigelow mbiolp_link sfcc

From The A.I.M. Archives

— Refresh Page for More Choices
CBS Miami reports that protesters are demanding answers and action over the toxic mess in Florida — a poisonous algae bloom plaguing four counties now under a state of em...
Kuo Chia-erh reports for Taipei Times that Taiwan Cement Corp, the nation’s leading cement supplier, has announced plans to expand its microalgae farm, which produces ast...
In New Zealand is an internationally significant collection of microalgae cultures known as the Cawthron Institute Culture Collection of Microalgae (CICCM). The CICCM was...
For plants and algae that carry on photosynthesis, light can be too much of a good thing. On a bright, sunny day, a plant might only be able to utilize 20 percent or less...
Jill Fehrenbacher writes in inhabitat.com that when it comes to design, Mother Nature has a lot to teach us. The field of Biodesign has emerged as an exciting new discipl...
Dr. Tom Dempster works as a research professor – focusing on strain selection and development, biomass production, algal biofuels and high-value products, and air and was...
If you’re a fan of the television show “Shark Tank”, you won't want to miss the episode that airs this Friday, November 18th 9:00-10:00 p.m. EST on ABC Television, when C...
Portuguese microalgae producer, Allmicroalgae Natural Products S.A., has moved to the next stage in development of new production technologies to grow Nannochloropsis oce...
Researchers at Iowa State University, in Ames, Iowa, are developing technology, using algae, that improves the efficiency of wastewater reclamation. The system uses verti...
Aquaculture is the fastest-growing segment in the feed industry. According to the 2017 Alltech Global Feed Survey, the aquaculture industry experienced a 12 percent incre...
Almost two years ago, on June 28, 2015, the rocket carrying experiments from Chatfield High School to the International Space Station disintegrated 139 seconds into its f...
ExxonMobil and Synthetic Genomics Inc. have announced that, in joint research into advanced biofuels, they have modified an algal strain to more than double its oil conte...