Click here for more information about Algenuity
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Research

A better understanding of green algae’s evolution

July 20, 2017
AlgaeIndustryMagazine.com

Vera Engelbrecht and Thomas Happe made a significant step toward understanding the evolution of green algae. Credit: ©RUB, Marquard

Anew jigsaw piece in the evolution of green algae has been identified by researchers at Ruhr-Universität Bochum, together with colleagues from Max Planck Institute in Mülheim an der Ruhr, in Germany. They analyzed the hydrogen-producing enzyme of a phylogenetically old alga. The team, headed by Vera Engelbrecht and Prof Dr. Thomas Happe from the research group Photobiotechnology, in Bochum, outlined their results in the journal “Biochimica et Biophysica Acta.”

Hydrogen-producing enzymes, so-called hydrogenases, have originally occurred in numerous bacteria. Green algae, too, contain such enzymes, using them for the light-driven generation of hydrogen. “The origins of this enzyme in algae had long been a mystery,” says Vera Engelbrecht. “We have now analyzed a link in evolutionary history of hydrogenases that had previously been missing.”

Algae, which are relatively young in evolutionary terms, contain specialized hydrogenases that show significant differences to the original varieties in bacteria. They are smaller and have a specific surface used for docking to the cell’s photosynthesis machinery. To this end, they bind to ferredoxin, a molecule that mediates electron transfer. Thus, they are able to produce hydrogen using light energy.

The phylogenetically old alga Chlorella variabilis has likewise the ability for light-driven generation of hydrogen. The researchers from Bochum and Mülheim isolated and characterized the Chlorella hydrogenase. Unlike in young algae, it shares many characteristics with the original bacteria enzyme and is unable to bind to the electron carrier ferredoxin.

“We found the results surprising,” said Dr. Happe. “Chlorella appears to still have an original metabolic pathway, which has changed completely in phylogenetically younger algae.”

The question why the more recent algae have developed a specialized hydrogenase in order to dock to photosynthesis via ferredoxin remains to be answered. “We are currently attempting to identify the precise metabolic connection of chlorella hydrogenase and to detect photosynthetic protein complexes in the organism that are as yet unknown,” says Dr. Happe.

Read More

More Like This…

Copyright ©2010-2018 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
Algatech has announced the opening of Algatech Inc., a New York City-based subsidiary created to serve the North American market. The company has appointed Ken Seguine to...
Carlsbad-based Surftech, a stand-up paddle (SUP) and Surfboard manufacturing company has announced its collaboration with BLOOM, a materials development company, to devel...
Washington State University researchers have developed a biofilm reactor to grow algae more efficiently, and make the algae more viable for several industries, including ...
Memory Maninga reports for Zambia Daily Mail that in Mansa, the capital of the Luapula Province of Zambia, spirulina is being grown in ponds in the communities because of...
The European Synchrotron Radiation Facility (ESRF) reports that an international team has discovered an enzyme which allows microalgae to convert some of their fatty acid...
Colorado State University scientists and Arizona State University’s Arizona Center for Algae Technology and Innovation are partners in a three-year grant of up to $3.5 mi...
The United States Department of Energy (DOE) announced that the University of New England was awarded a three-year, nationally competitive research grant for $1,321,039 f...
Portuguese microalgae producer, Allmicroalgae Natural Products S.A., has recently begun production of Chlorella vulgaris and other microalgae species via fermentation, wh...
Cyanotech Corporation a leader in microalgae-based, high-value nutrition and health products, announced financial results for the third quarter and first nine months of f...
French researchers have been exploring the potential of algae for boosting the immune systems of animals and reducing the use of antibiotics in livestock farming. Past st...
JapanNews.com reports that Euglena Co., a Tokyo-based maker of nutritional supplements, is spending ¥5.8 billion ($5.3 million USD) on building a test refinery that conve...
At the Technical University of Denmark (DTU), Science Nordic.com reports, researchers are investigating bioluminescent algae, to determine whether bioluminescent organism...