twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Research

Analyzing a strange symbiosis

May 18, 2017
AlgaeIndustryMagazine.com

The first known example of photo-cellular symbiosis involving the cells of a fully grown vertebrate animal. Photo courtesy of Gizmodo

George Dvorsky writes in Gizmodo.com that, in a scientific first, researchers have discovered a bizarre inter-species relationship in which salamanders and algae cozy up together to share cells. Scientists aren’t entirely sure why these two very different organisms have adopted such an intimate arrangement, but the discovery could represent a completely new form of symbiotic relationship.

Cell-within-cell arrangements between species are common in nature, but up until this point it’s only been seen in creatures like coral, clams, and insects. New research published in the science journal eLife describes the first known example of photo-cellular symbiosis involving the cells of a fully grown vertebrate animal, that is, an animal with a spinal column or backbone.

As a collaborative research team from the American Museum of Natural History and Gettysburg College revealed, the green alga Oophila amblystomatis makes its home inside of cells located across the body of the spotted salamander Ambystoma maculatum. The salamander doesn’t appear to be negatively affected by its microbial roommates, and in fact the amphibian may even be benefitting from this arrangement. The normally photosynthetic green algae, on the other hand, are completely stressed out, forced to rely on an alternative means of energy production.

The finding is so strange and so unexpected that the scientists involved in the study aren’t sure why this relationship evolved in the first place, or how each creature might be benefitting.

To investigate this unusual relationship, John Burns from the AMNH’s Museum’s Division of Invertebrate Zoology sought to uncover what happens when the salamander cells and green algae cells are together. Using a technique called RNA-Seq, the researchers sequenced the RNA (a single-stranded copy of DNA that helps cells make proteins) of both organisms, and then used those sequences to learn how the algae and salamanders changed their patterns of gene expression while interacting.

As the data revealed, salamander cells containing green algae recognized the algae as foreign, but the salamanders showed no signs of distress. “The salamander really doesn’t seem too bothered by this [arrangement],” Dr. Burns told Gizmodo. “In fact, there are tantalizing hints that the salamander is actually responding in a way that dampens its immune response to this alga. Some genes related to slowing down a potent immune response were highly expressed by the salamander in this association.”

“We are very interested in doing more research imaging the algal cells as they enter the salamander tissues and cells,” study co-author Ryan Kerney told Gizmodo. “New advances in microscopy could give us additional insights into the dynamics of tissue entry, and even the exchange of molecules between symbiont and host.”

Read More

More Like This…

HOME A.I.M. Archives

Copyright ©2010-2017 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

Visit our 2017 International Reader’s Poll Platinum Sponsors

bigelow mbiolp_link sfcc

From The A.I.M. Archives

— Refresh Page for More Choices
Scientists at Dartmouth College, in Hanover, New Hampshire, have discovered that marine microalgae can completely replace the wild fish oil currently used to feed tilapia...
CBS Miami reports that protesters are demanding answers and action over the toxic mess in Florida — a poisonous algae bloom plaguing four counties now under a state of em...
In Australia, the New South Wales Deep Green Biotech Hub (DGBH) has been launched as an enabling incubator environment to foster the development of algae as a cost effect...
Tafline Laylin writes for Inhabitat.com about the elegant solution that Romanian designer Alexandru Predonu has conceived that uses solar energy to power a rotating desal...
Agcore Technologies LLC, producer of Agcore Spirulina, has announced that their 2016 expansion project to support their growing aquafeed demand is in the completion proce...
Algatechnologies Ltd (Algatech), of Kibbutz Ketura, Israel, has become part of the FoodConnects consortium, as winner of a pan-European competition for the Food4Future pr...
Discovering which algae species is best suited to make biofuel is no small task. Researchers have tried to evaluate algae in test tubes, but often find lab results don’t ...
Essen, Germany-based Evonik, and Royal DSM, headquartered in Kaiseraugst, Switzerland, have announced their intention to establish a joint venture for omega-3 fatty acid ...
Matt Stultz writes in MakeZine.com about Algix’ unique 3-D printing filament created with a combination of algae and Polylactic Acid (PLA) – a biodegradable thermoplastic...
Qualitas Health, an algae-based health and nutrition company headquartered in Texas, has announced a long term, strategic partnership with commercial crop producer Green ...
Carl Zimmer writes in The New York Times about a team of Australian scientists studying how climate change will alter ecosystems – by using miniature ecosystems, called m...
ExxonMobil and Synthetic Genomics Inc. have announced that, in joint research into advanced biofuels, they have modified an algal strain to more than double its oil conte...