[ad#PhycoBiosciences AIM Interview]

Innovations

Three varieties of algal-blended resins containing up to 50% algae or duckweed biomass.

Three varieties of algal-blended resins containing up to 50% algae or duckweed biomass.

Algix Developing Algal-based Plastics

July 9, 2012
AlgaeIndustryMagazine.com

Algix, LLC is a bioplastics company developing novel thermoplastic formulations and resins using feedstocks from renewable sources. The Algix Bio-resins derive up to 70% of their feedstock from aquatic biomass obtained from nitrogen and phosphorus-rich wastewater, blended with various concentrations of PE, PP, EVA, PLA, TPS, PHA etc.* for use in a wide range of end-use applications.

A variety of raw aquatic feedstocks, such as spirulina, periphyton, duckweed and diatoms.

A variety of raw aquatic feedstocks, such as spirulina, periphyton, duckweed and diatoms.

Algix has partnered with the University of Georgia and Kimberly-Clark to commercialize the cultivation of aquatic biomass, such as algae, as a feedstock for bioplastic conversion. The company is targeting agricultural and industrial operations, such as livestock farms and wastewater treatment facilities, as a source of low-cost nutrients for high productivity aquatic biomass cultivation. Additionally, Algix is developing customized bioplastic formulations for industrial, commercial and retail applications.

Injection molded 3-D prototype containers comprised of at least 50% algae biomass

Injection molded 3-D prototype containers comprised of at least 50% algae biomass

Algix’s approach allows industries (textile, agriculture, aquaculture, municipal, etc.) the opportunity to capture their lowest-value waste product. Through bioremediation using algae and aquatic macrophytes, photosynthesis captures solar energy and converts the wastewater nutrients into protein-rich biomass that can be used as raw material for composite formulations to make bioplastics. With proper investment facilitating economies of scale, this material may become a viable option for those looking for a cost-competitive, bio-based, thermoplastic resin and masterbatch.

Flexing of a highly elastic dogbone comprised of microalgae and EVA.

Flexing of a highly elastic dogbone comprised of microalgae and EVA.

Ryan Hunt, Director of R&D at Algix, co-authored “Microalgae Cultivation in a Wastewater Dominated by Carpet Mill Effluents for Biofuel Applications” in 2010, and “Sustainable Bioderived Polymeric Materials and Thermoplastic Blends made from Floating Aquatic Macrophytes such as Duckweed” in 2012, testimony to his company’s innovative edge in the bioengineering of aquatic biomass.

The company is located in Georgia, where over 150 carpet plants that produce millions of gallons of nutrient-rich waste water are co-located. Research conducted at the University of Georgia, where Mr. Hunt is an alumni, has demonstrated high growth rates from various strains of algae and isolated top performing microalgae strains for further development.

Algix is currently developing partnerships and collaborations for developing resins for use in extrusion compounding, injection molding, cast films, spun fibers and thermoforming applications.

PE: Polyethylene
PP : polypropylene
EVA: Ethyl-vinyl Acetate
PLA: Poly Lactic Acid (biobased from corn or sugar cane usually)
TPS: Thermoplastic starch (corn, potato, starch based)
PHA: Polyhydroxyalkanoate (biobased made through fermentation with microbes, still quite expensive, google Metabolix and ADM’s struggle with this polymer)

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
For plants and algae that carry on photosynthesis, light can be too much of a good thing. On a bright, sunny day, a plant might only be able to utilize 20 percent or less...
Dr. Tom Dempster works as a research professor – focusing on strain selection and development, biomass production, algal biofuels and high-value products, and air and was...
Haley Gray reports for 5280.com that Upslope Brewing Company, in Boulder, Colorado, is one step closer to its goal of becoming a zero-waste brewery. The craft beer maker ...
Cellana, Inc., a leading developer of algae-based products for sustainable nutrition and energy applications, and PIVEG, Inc., a leader in high-specification ingredients ...
If you’re a fan of the television show “Shark Tank”, you won't want to miss the episode that airs this Friday, November 18th 9:00-10:00 p.m. EST on ABC Television, when C...
Forbes is running an interview with Bren Smith, an Ashoka Fellow and the founder of GreenWave, an organization dedicated to restoring oceans, mitigating climate change an...
Researchers at Iowa State University, in Ames, Iowa, are developing technology, using algae, that improves the efficiency of wastewater reclamation. The system uses verti...
Matt Stultz writes in MakeZine.com about Algix’ unique 3-D printing filament created with a combination of algae and Polylactic Acid (PLA) – a biodegradable thermoplastic...
Almost two years ago, on June 28, 2015, the rocket carrying experiments from Chatfield High School to the International Space Station disintegrated 139 seconds into its f...
Monica Jain of Fish 2.0 writes in National Geographic about how the algae brand is about to undergo an image makeover, and may soon seem flat-out glamorous — once again. ...
The U.S. Department of Energy (DOE) has announced the selection of three projects to receive up to $8 million, aimed at reducing the costs of producing algal biofuels and...
Memory Maninga reports for Zambia Daily Mail that in Mansa, the capital of the Luapula Province of Zambia, spirulina is being grown in ponds in the communities because of...