[ad#PhycoBiosciences AIM Interview]

Innovations

Three varieties of algal-blended resins containing up to 50% algae or duckweed biomass.

Three varieties of algal-blended resins containing up to 50% algae or duckweed biomass.

Algix Developing Algal-based Plastics

July 9, 2012
AlgaeIndustryMagazine.com

Algix, LLC is a bioplastics company developing novel thermoplastic formulations and resins using feedstocks from renewable sources. The Algix Bio-resins derive up to 70% of their feedstock from aquatic biomass obtained from nitrogen and phosphorus-rich wastewater, blended with various concentrations of PE, PP, EVA, PLA, TPS, PHA etc.* for use in a wide range of end-use applications.

A variety of raw aquatic feedstocks, such as spirulina, periphyton, duckweed and diatoms.

A variety of raw aquatic feedstocks, such as spirulina, periphyton, duckweed and diatoms.

Algix has partnered with the University of Georgia and Kimberly-Clark to commercialize the cultivation of aquatic biomass, such as algae, as a feedstock for bioplastic conversion. The company is targeting agricultural and industrial operations, such as livestock farms and wastewater treatment facilities, as a source of low-cost nutrients for high productivity aquatic biomass cultivation. Additionally, Algix is developing customized bioplastic formulations for industrial, commercial and retail applications.

Injection molded 3-D prototype containers comprised of at least 50% algae biomass

Injection molded 3-D prototype containers comprised of at least 50% algae biomass

Algix’s approach allows industries (textile, agriculture, aquaculture, municipal, etc.) the opportunity to capture their lowest-value waste product. Through bioremediation using algae and aquatic macrophytes, photosynthesis captures solar energy and converts the wastewater nutrients into protein-rich biomass that can be used as raw material for composite formulations to make bioplastics. With proper investment facilitating economies of scale, this material may become a viable option for those looking for a cost-competitive, bio-based, thermoplastic resin and masterbatch.

Flexing of a highly elastic dogbone comprised of microalgae and EVA.

Flexing of a highly elastic dogbone comprised of microalgae and EVA.

Ryan Hunt, Director of R&D at Algix, co-authored “Microalgae Cultivation in a Wastewater Dominated by Carpet Mill Effluents for Biofuel Applications” in 2010, and “Sustainable Bioderived Polymeric Materials and Thermoplastic Blends made from Floating Aquatic Macrophytes such as Duckweed” in 2012, testimony to his company’s innovative edge in the bioengineering of aquatic biomass.

The company is located in Georgia, where over 150 carpet plants that produce millions of gallons of nutrient-rich waste water are co-located. Research conducted at the University of Georgia, where Mr. Hunt is an alumni, has demonstrated high growth rates from various strains of algae and isolated top performing microalgae strains for further development.

Algix is currently developing partnerships and collaborations for developing resins for use in extrusion compounding, injection molding, cast films, spun fibers and thermoforming applications.

PE: Polyethylene
PP : polypropylene
EVA: Ethyl-vinyl Acetate
PLA: Poly Lactic Acid (biobased from corn or sugar cane usually)
TPS: Thermoplastic starch (corn, potato, starch based)
PHA: Polyhydroxyalkanoate (biobased made through fermentation with microbes, still quite expensive, google Metabolix and ADM’s struggle with this polymer)

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
The U.S. Department of Energy (DOE) has announced the selection of three projects to receive up to $8 million, aimed at reducing the costs of producing algal biofuels and...
Washington State University researchers have developed a biofilm reactor to grow algae more efficiently, and make the algae more viable for several industries, including ...
Memory Maninga reports for Zambia Daily Mail that in Mansa, the capital of the Luapula Province of Zambia, spirulina is being grown in ponds in the communities because of...
Researchers at ETH Zurich, Empa and the Norwegian research institute SINTEF are pursuing a new approach to treating arthritis. This is based on a polysaccharide, a long-c...
The European Synchrotron Radiation Facility (ESRF) reports that an international team has discovered an enzyme which allows microalgae to convert some of their fatty acid...
Cyanotech Corporation a leader in microalgae-based, high-value nutrition and health products, announced financial results for the third quarter and first nine months of f...
Trade Arabia reports that the Oman Centre for Marine Biotechnology (OCMB) recently signed a memorandum of understanding with Swedish Algae Factory to support the domestic...
The recently signed US two-year budget deal – featuring bipartisan support for a $35 per ton tax incentive for carbon captured and recycled from power plants or industria...
Cody Nelson writes for MPRNews.org that a team of University of Minnesota-Duluth researchers wanted to know how shortening winters — and less ice cover on lakes — might i...
Israeli-based Algatechnologies, Ltd. (Algatech) has become the major shareholder in Supreme Health New Zealand, Ltd. (Supreme) to supply the rapidly growing markets in Ch...
Judith Lewis Mernit writes in e360.yale.edu that an experiment being conducted by animal science professor Ermias Kebreab at the University of California, Davis, is testi...
The Swiss Algae Consortium Association (SWALG) was founded in May 2018 as a non-profit organization that serves as a platform for algae-related activities in Switzerland ...