[ad#PhycoBiosciences AIM Interview]

Innovations

Three varieties of algal-blended resins containing up to 50% algae or duckweed biomass.

Three varieties of algal-blended resins containing up to 50% algae or duckweed biomass.

Algix Developing Algal-based Plastics

July 9, 2012
AlgaeIndustryMagazine.com

Algix, LLC is a bioplastics company developing novel thermoplastic formulations and resins using feedstocks from renewable sources. The Algix Bio-resins derive up to 70% of their feedstock from aquatic biomass obtained from nitrogen and phosphorus-rich wastewater, blended with various concentrations of PE, PP, EVA, PLA, TPS, PHA etc.* for use in a wide range of end-use applications.

A variety of raw aquatic feedstocks, such as spirulina, periphyton, duckweed and diatoms.

A variety of raw aquatic feedstocks, such as spirulina, periphyton, duckweed and diatoms.

Algix has partnered with the University of Georgia and Kimberly-Clark to commercialize the cultivation of aquatic biomass, such as algae, as a feedstock for bioplastic conversion. The company is targeting agricultural and industrial operations, such as livestock farms and wastewater treatment facilities, as a source of low-cost nutrients for high productivity aquatic biomass cultivation. Additionally, Algix is developing customized bioplastic formulations for industrial, commercial and retail applications.

Injection molded 3-D prototype containers comprised of at least 50% algae biomass

Injection molded 3-D prototype containers comprised of at least 50% algae biomass

Algix’s approach allows industries (textile, agriculture, aquaculture, municipal, etc.) the opportunity to capture their lowest-value waste product. Through bioremediation using algae and aquatic macrophytes, photosynthesis captures solar energy and converts the wastewater nutrients into protein-rich biomass that can be used as raw material for composite formulations to make bioplastics. With proper investment facilitating economies of scale, this material may become a viable option for those looking for a cost-competitive, bio-based, thermoplastic resin and masterbatch.

Flexing of a highly elastic dogbone comprised of microalgae and EVA.

Flexing of a highly elastic dogbone comprised of microalgae and EVA.

Ryan Hunt, Director of R&D at Algix, co-authored “Microalgae Cultivation in a Wastewater Dominated by Carpet Mill Effluents for Biofuel Applications” in 2010, and “Sustainable Bioderived Polymeric Materials and Thermoplastic Blends made from Floating Aquatic Macrophytes such as Duckweed” in 2012, testimony to his company’s innovative edge in the bioengineering of aquatic biomass.

The company is located in Georgia, where over 150 carpet plants that produce millions of gallons of nutrient-rich waste water are co-located. Research conducted at the University of Georgia, where Mr. Hunt is an alumni, has demonstrated high growth rates from various strains of algae and isolated top performing microalgae strains for further development.

Algix is currently developing partnerships and collaborations for developing resins for use in extrusion compounding, injection molding, cast films, spun fibers and thermoforming applications.

PE: Polyethylene
PP : polypropylene
EVA: Ethyl-vinyl Acetate
PLA: Poly Lactic Acid (biobased from corn or sugar cane usually)
TPS: Thermoplastic starch (corn, potato, starch based)
PHA: Polyhydroxyalkanoate (biobased made through fermentation with microbes, still quite expensive, google Metabolix and ADM’s struggle with this polymer)

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
The U.S. Department of Energy’s just released 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy summarizes the most recent estimates of pote...
The water sample taken from the St. Lucie River near the coastline of Ft. Pierce, Florida was loaded with blue-green algae when it arrived in Ben Spaulding’s lab in Scarb...
Cellana, Inc., a leading developer of algae-based products for sustainable nutrition and energy applications, and PIVEG, Inc., a leader in high-specification ingredients ...
Portuguese microalgae producer, Allmicroalgae Natural Products S.A., has moved to the next stage in development of new production technologies to grow Nannochloropsis oce...
Forbes is running an interview with Bren Smith, an Ashoka Fellow and the founder of GreenWave, an organization dedicated to restoring oceans, mitigating climate change an...
Researchers at Iowa State University, in Ames, Iowa, are developing technology, using algae, that improves the efficiency of wastewater reclamation. The system uses verti...
Aquaculture is the fastest-growing segment in the feed industry. According to the 2017 Alltech Global Feed Survey, the aquaculture industry experienced a 12 percent incre...
Essen, Germany-based Evonik, and Royal DSM, headquartered in Kaiseraugst, Switzerland, have announced their intention to establish a joint venture for omega-3 fatty acid ...
A Quebec-based company that specializes in the manufacturing and commercialization of marine and seaweed-based products for agriculture and horticulture constructed a new...
Marlene Cimons, nexusmedianews.com reports that researchers at the University of California San Diego and Sapphire Energy have successfully grown a genetically engineered...
The Department of Energy has just announced $22 million in funding through the Advanced Research Projects Agency-Energy (ARPA-E) for 18 innovative projects as part of the...
UC San Diego students and researchers have produced the world’s first algae-based, renewable flip flops. The first prototypes of their new invention, developed over the s...