Click here for more information about Algenuity
Click here for more information about LiqofluxPhenometrics Buy 3 Get 1 Free
Visit cricatalyst.com!Evodos Separation Technology

Research

Algal enzyme could improve photosynthesis efficiency

September 19, 2016 — by Sarah Yang
AlgaeIndustryMagazine.com

Plant leaves expressing an algal gene are shown in violet. The gene restores the photoprotection capacity of the plant. Credit: Zhirong Li/UC Berkeley

Plant leaves expressing an algal gene are shown in violet. The gene restores the photoprotection capacity of the plant. Credit: Zhirong Li/UC Berkeley

For plants and algae that carry on photosynthesis, light can be too much of a good thing. On a bright, sunny day, a plant might only be able to utilize 20 percent or less of absorbed sunlight. The plant dissipates the excess light energy to prevent damage and oxidative stress, and a process called the xanthophyll cycle helps to flip the switch between energy dissipation and energy utilization.

But what if there were a way to tweak that cycle without harming the plant? Berkeley Lab plant biologists are asking that question in an effort to tap into that extra light energy to improve plant growth.

“By manipulating photoprotection in plants, it may be possible to improve the efficiency of photosynthesis, and one potential outgrowth of that is higher crop productivity,” said Krishna Niyogi, a faculty scientist in Berkeley Lab’s Division of Molecular Biophysics and Integrative Bioimaging and a UC Berkeley professor of plant and microbial biology. “This is a relatively new and underappreciated area of exploration when it comes to understanding and improving photosynthesis.”

The xanthophyll cycle involves the synthesis of a pigment called zeaxanthin – an antioxidant that gives corn its yellow color – from another pigment called violaxanthin. Violaxanthin de-epoxidase (VDE) is the key enzyme responsible for this process, which kicks into gear in the presence of excess light.

Dr. Niyogi and a postdoctoral researcher in his lab, Zhirong Li, recently identified a target in the photoprotection mechanism by studying the unicellular green alga Chlamydomonas reinhardtii, which is widely used as a model organism to study photosynthesis. The alga produced an enzyme called Chlorophycean VDE (CVDE) that was completely different from the other plant enzymes in the xanthophyll cycle.

To confirm whether this new enzyme performed the same role as the other xanthophyll enzymes, the researchers inserted the CVDE gene into mutant forms of algae and plants that do not produce zeaxanthin. They found that this CVDE enzyme successfully restored the photoprotective abilities of the algae and plants.

Notably, the CVDE protein in the algae is located in a completely different area of the cell – the stromal side of the thylakoid membrane – than its counterpart in plants. By analyzing its evolutionary history, the researchers found that CVDE most likely evolved from an ancient enzyme that was present in the common ancestor of green algae and plants.

“There are about 700 million years or more of evolutionary separation between the green algae group we studied and land plants,” said Dr. Li. “Despite this, the atypical CVDE protein we identified performs the same photoprotective function. This means that it may be possible to mix and match the regulatory components of light harvesting from different clades of photosynthetic organisms to fine-tune the efficiency of photosynthesis.”

Read More

More Like This…

Copyright ©2010-2019 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
Cody Nelson writes for MPRNews.org that a team of University of Minnesota-Duluth researchers wanted to know how shortening winters — and less ice cover on lakes — might i...
Israeli-based Algatechnologies, Ltd. (Algatech) has become the major shareholder in Supreme Health New Zealand, Ltd. (Supreme) to supply the rapidly growing markets in Ch...
At the Technical University of Denmark (DTU), Science Nordic.com reports, researchers are investigating bioluminescent algae, to determine whether bioluminescent organism...
Foodbev.com reports that French marine ingredients company Algaia will install a new specialty seaweed extract unit at its facility in Brittany, France, after securing €4...
Hayley Dunning writes from the Imperial College of London that a new discovery has changed our understanding of the basic mechanism of photosynthesis and should rewrite t...
Amy Thompson writes in Space.com that SpaceX successfully launched its 15th Space Station cargo-resupply mission on Friday, June 29; carrying a payload of experiments des...
Algae and corals have been leaning on each other since dinosaurs roamed the earth, much longer than had been previously thought, according to new research led by scientis...
The Swiss Algae Consortium Association (SWALG) was founded in May 2018 as a non-profit organization that serves as a platform for algae-related activities in Switzerland ...
Julianna Photopoulos writes in Horizon EU Research and Innovation magazine that UK start-up Skipping Rocks Lab aims to use natural materials extracted from plants and sea...
Steve Fountain writes in fortstocktonpioneer.com that, amid the 800-page law that last month set the country’s farm policy through 2023, is the expansion of federal suppo...
Jessica D'Lima writes in AdvancedScienceNews.com that medicine is moving towards minimally invasive procedures, which have important patient-oriented benefits such as sho...
Susan Kraemer writes in solarpaces.org that to use solar thermal energy to convert farmed algae to fuel, the solar fuels research team at Australian National University (...