Click here for more information about Algenuity
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Research

Algae with Bioenergy with Carbon Capture and Storage

April 15, 2018
AlgaeIndustryMagazine.com

Process Flow Diagram. Capital costs for each component are shown beneath the component label in millions of dollars. The overall facility includes 2800 ha (6920 ac), which is 96% eucalyptus forest and 4% algae production.

The University of Hawaii at Hilo announced that in affiliation with Duke and Cornell Universities, researchers have authored a study that suggests making croplands more efficient through algae production could unlock an important negative emission technology to combat climate change.

Their research, “Integrating Algae with Bioenergy Carbon Capture and Storage (ABECCS) Increases Sustainability,” is funded by a U.S. Department of Energy award and was recently published in the journal Earth’s Future.

The authors include Colin Beal and Ian Archibald of UH Hilo’s College of Agriculture, Forestry and Natural Resource Management (CAFNRM), Mark Huntley and Charles Green, who are affiliated with both CAFNRM and Cornell University, and Zackary Johnson of Duke University’s Biology Department and Marine Laboratory. Their study creates a new, combined process to remove carbon dioxide from the atmosphere, produce food and electricity and reduce deforestation.

“Bioenergy with Carbon Capture and Storage (BECCS)” burns wood to generate power, captures the resulting carbon dioxide and buries it underground. But BECCS has been strongly criticized for threatening land and water resources that support natural forests and agriculture production.

Marine microalgae has emerged as a promising source for food and biofuels. The tiny plants can be produced using seawater, grown in higher quantities than land crops and in areas unsuitable for agriculture. The main drawback is that algae growth requires large quantities of electricity and carbon dioxide.

The study’s authors combine BECCS with algae production to create a new synergistic process called “Algae with Bioenergy with Carbon Capture and Storage (ABECCS).” A conceptual model is created by replacing soybean cropland with an algae production facility that requires less land to produce the same amount of higher quality protein. The leftover land is then used to grow timber for a BECCS system to generate power and carbon dioxide to drive the algae production. By using less land, additional electricity can be exported and the carbon dioxide sequestered, or the excess land can be returned to natural forest.

The financial viability of an ABECCS system remains an area of active research. The proposed system in its current form requires a sale price for algal biomass that is significantly greater than that for soybeans or many other terrestrial crops. Options include targeting algal protein for human consumption to provide a higher value product instead of replacing soy as a source of animal feed.

“The motivation for this study was to evaluate the potential for an alternative BECCS system that integrates algal biomass production to sequester CO2 without reducing agricultural output,” the authors wrote. “Based on these results, and with favorable economic conditions, ABECCS could be a leading candidate to contribute to the reduction of CO2 in the atmosphere in a sustainable way.”

More Like This…

HOME A.I.M. Archives

Copyright ©2010-2018 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
Carl Zimmer writes in The New York Times about a team of Australian scientists studying how climate change will alter ecosystems – by using miniature ecosystems, called m...
ExxonMobil and Synthetic Genomics Inc. have announced that, in joint research into advanced biofuels, they have modified an algal strain to more than double its oil conte...
WesTech Engineering, Inc. and Utah State University’s Sustainable Waste-to-Bioproducts Engineering Center (SWBEC) are jointly engaged in developing processes for more eff...
David Erickson writes in the (Montana) Missoulian that Clearas Water Recovery, a Missoula tech company formed eight years ago, has developed a patented process to use alg...
Will Yeates reports in DailyPlanet.com that an urban “algae farm” producing low-carbon protein and bio-fuel is one of the highlights on show this week at the future energ...
Adoption of advanced technologies in various stages of natural astaxanthin production, such as microalgae harvesting, cultivation, extraction, and drying, have been major...
The European Synchrotron Radiation Facility (ESRF) reports that an international team has discovered an enzyme which allows microalgae to convert some of their fatty acid...
UC San Diego students and researchers have produced the world’s first algae-based, renewable flip flops. The first prototypes of their new invention, developed over the s...
Malaysia-based Algaetech International, a pioneer algae technology company specializing in R&D, as well as production and commercialization of algae-derived high valu...
Portuguese microalgae producer, Allmicroalgae Natural Products S.A., has recently begun production of Chlorella vulgaris and other microalgae species via fermentation, wh...
Watertechonline.com reports that the All-Gas project in the El Torno treatment plant in Chiclana, in southwestern Spain, in the province of Cádiz, has started its demonst...
Cyanotech Corporation a leader in microalgae-based, high-value nutrition and health products, announced financial results for the third quarter and first nine months of f...