Algae Medical Solutions – Part 5

Algae Diabetes Solutions

June 16, 2013
AlgaeIndustryMagazine.com

The Centers for Disease Control, (CDC) reported that one out of three American children born after the year 2000 will contract diabetes – predominantly due to a poor diet of nutrient-deficient calories. Over 40% of women are likely to contract diabetes. The plague of obesity and diabetes creates havoc on our educational system and creates immense drag on our health system.

The cost of diabetes in the U.S. approaches $200 billion annually. Neither the obesity nor the diabetes costs include the drag on education, social systems, businesses and the military. Our society will fail if we do not find solutions to obesity and diabetes quickly.

Childhood obesity causes diabetes when the body makes insufficient insulin or cannot use its own insulin effectively and sugars build up in the blood. Diabetes is one of the most common chronic diseases in children and adolescents and rates are escalating dramatically.

Diabetes is a serious disease because it is associated with an increased risk of life threatening complications such as a heart attack, stroke, or kidney disease. Overall, the risk for death among people with diabetes for these catastrophic complications is about four times that of people without diabetes. In addition to an earlier death, diabetes carries with it significant risks for serious complications such as blindness, the need for dialysis and limb amputation.

Diabetes and algae

Diabetes mellitus occurs when blood sugar levels become elevated. Type 1 diabetes is associated with the destruction of the cells in the pancreas that manufacture insulin. Individuals with Type 1 diabetes require lifelong insulin for the control of blood sugar levels. In Type 2 diabetes insulin levels are typically elevated, indicating a loss of sensitivity to insulin by the cells of the body.

Research on humans and animals shows algae components offer significant utility in the prevention and control of diabetes. Aligned studies have demonstrated algae’s therapeutic value for the diseases common with diabetics; cholesterol management, blood pressure, heart disease and cancers. Algae can moderate chronic inflammation that often precedes and accompany degenerative diseases. Algae compounds provide therapeutic value for diabetes and fat metabolism.

Kelp compounds moderate inflammatory diseases

Kelp compounds moderate inflammatory diseases

For example, kelp are brown seaweeds that contain up to 13 times more calcium than milk and powerful antioxidants that are not found in land plants: fucoxanthin and fucoidan. Kelps are macroalgae rich in B vitamins, vitamin C and vitamin K1 with high mineral content in magnesium, potassium and iron. The plentiful soluble dietary fibers in algae help avoid obesity and diabetes. The total fiber content of several algae species, (~6 g/100g), is greater than that of fruits and vegetables promoted for their fiber content: prunes (2.4 g), cabbage (2.9 g), apples (2.0 g) and brown rice (3.8 g).

The many varieties of kelp grow mostly in the oceans of the world. Kelp and other sea vegetables have been eaten by societies that lived near oceans and estuaries for centuries. Sea vegetables are commonly available in health food and Asian stores as dried sheets or cut pieces. Sea vegetables are commonly used as a nutritionally rich additive to salads, soups, stews and casseroles to add color, taste and texture.

The research reviewed here focuses on red and brown macroalgae but many of the same or similar compounds are abundant in other algae species.

Kelp, Nori and other Sea Vegetables

Kelp, Nori and other Sea Vegetables

Appetite control

Algae compounds provide a wide array of medical benefits for children plagued with obesity and diabetes. Two unique strategies may be called fill-gut and gut-full signals.

Fill-gut adds a small amount of dried algae eaten early in a normal meal, which then expands and fills the stomach. Alginates can absorb 300 times their weight in water, which fill the gut and suppresses appetite.

Fill-gut adds a small amount of dried algae eaten early in a normal meal, which then expands and fills the stomach. Alginates can absorb 300 times their weight in water, which fill the gut and suppresses appetite.

Certain algae-based compounds activate the stomach’s natural satiety signaling mechanism. The signal creates an artificial feeling of fullness, which signals the eater to stop eating. The signals also quash the nosh feeling.

Certain algae-based compounds activate the stomach’s natural satiety signaling mechanism. The signal creates an artificial feeling of fullness, which signals the eater to stop eating. The signals also quash the nosh feeling.

Algae strategies to prevent overeating

Studies show that sodium alginate reduces plasma glucose and protects the antioxidant system in diabetics. Alginic acid and other compounds in sea vegetables exert a protective effect against diabetes. Alginic acid may improve the sensitivity of cells to the action of insulin, thereby improving glucose tolerance and normalizing blood sugar.

Sodium alginate induces significantly lower postprandial rises in blood glucose, serum insulin and plasma C-peptides. The addition of sodium alginate in the diet leads to a delayed gastric emptying rate induced by the fiber, which moderates glucose response.

Algae polyphenol extracts have anti-diabetic effects through the modulation of glucose-induced oxidative stress. These extracts slow starch-digestive enzymes such as alpha-amylase and alpha-glucosidase.

Visible impacts

A 2012 lab rat study graphically describes the impacts of diabetes and hypoglycemic effect. Healthy rats at the same age and body weight reacted nimbly, and had hair that was bright and smooth. Alloxan was injected and the animals showed typical signs of diabetes mellitus: clumsiness, slow actions, dull colored fur and marasmus. Average body weights reduced significantly.

After kelp powder forage was administered, the action and hair color of animals in kelp treated and DM-model groups recovered gradually, with body weight becoming significantly higher than before treatment. Diabetic animals treated with a placebo continued to display signs of diabetes and to lose weight.

Insulin resistance syndrome

The cluster of medical conditions that make up the insulin resistance syndrome or metabolic syndrome significantly increases the risk of developing type-2 diabetes and atherosclerosis. Over one-third of adult Americans have insulin resistance or metabolic syndrome. Numerous studies show that diets high in sugar or high glycemic foods that the body transforms to sugar, create unhealthy loads of blood sugar and contribute to obesity and diabetes. A small dose of soluble alginate-fiber significantly reduces postprandial glycemia and gastric emptying in humans with diabetes. Both effects reduce prediabetic and diabetic symptoms.

People who consume alginate fibers in drinks, bars or in other forms experience a sensation of satiety, so they eat less and lose more weight. Human trials have shown significantly more weight loss when the diet includes alginates compared with the placebo group.

Hypoglycemic effects

Several lines of research have investigated algae’s ability to moderate hypoglycemic effects through enhancement of glucose uptake in the liver and in soleus muscles. Improved insulin sensitivity after algae treatment could be also due to lower serum non-esterified fatty acid levels. Insulin sensitivity tends to blunt elevated non-esterified fatty acids in people with diabetes.

Several algae species such as Ulva, Ascophyllum, Alaria, and Palmaria are rich in phenolic compounds that are natural antioxidants and exhibit bioactive properties. A phenolic rich extracts from various algae species have been shown to inhibit digestive enzymes and achieve anti-diabetic effects.

Algae pharmaceuticals and medicines are currently in trial phases. These valuable algae therapeutics should move through medical approval relatively quickly since they are natural products and, to date, have shown no allergic reactions.

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Natural carotenoid specialists Piveg Inc., with production facilities based in Celaya, Central Mexico, has announced immediate availability of natural astaxanthin materia...
The University of Greenwich is leading a €10m international project, called the ‘D-Factory,’ to build a biorefinery to develop the microalga Dunaliella as a sustainable r...
Biomass abounds on Earth, as forests, fields, sewage and seaweed. But only a small fraction, mostly human or agricultural waste, can be harvested without posing environme...
Valensa International and Contract Biotics have announced that Contract Biotics has started construction of an additional six acres of algae production units at the compa...
Algae is being discussed at the heart of EXPO Milano 2015, the international event that has existed since 1851, spawning world shaping themes and icons, such as the Eiffe...
“Proterro has reached its Q1 sugar-production pilot milestones,” CEO Kef Kasdin reported at the recent Advanced Biofuels Leadership Conference, in Washington, D.C. “In fo...
Yereth Rosen reports in the Anchorage Daily News that scientists at North Carolina State University’s Plants for Human Health Institute have found extremely high levels o...
A team of six University of Calgary researchers has been awarded funding for their project, Cost Effective Biotechnology for Carbon Capture and Re-Use, based on the conce...
Santa Fe Community College has been awarded a $50,000, SEED Infrastructure Grant from the Experimental Program to Stimulate Competitive Research (EPSCoR), for commercial ...
A new, outdoor system at the University of Dayton Research Institute has been producing a high volume of algae since its installation in the summer of 2013, even through ...
Gilbert, AZ-based Heliae has announced a partnership with Sincere Corporation, a Japanese waste management and recycling company, to form a joint venture and develop a co...
Kyae Mone Win reports in the Myanmar Times that spirulina has been harvested from Twin Daung lake in Sagaing’s Bu Ta Lin township for over a decade, but climate change an...
Starting in the early 70s, agencies in the former USSR invested more than 20,000 person-years of research and development to produce Bio-Algae Concentrates (BAC) that hel...
Steven Mufson reports for the Washington Post that Algenol Biofuels estimates hackers have attempted to break into its computers 39 million times in four months this year...
A recent discovery in the multicellular green alga, Volvox carteri,has revealed the origin of male and female sexes, showing how they evolved from a more primitive mating...
In an effort to propel the algae industry forward, the Algae Testbed Public Private Partnership (ATP3) offers a series of hands-on specialized workshops suited for partic...
Using a combination of satellite imagery and laboratory experiments, researchers have evidence showing that viruses infecting those algae are driving the life-and-death d...
Oregon State University researchers are combining diatoms, a type of single-celled photosynthetic algae, with nanoparticles to create a sensor capable of detecting minisc...