Algae Medical Solutions – Part 2

Algae offer global nutrient deficiency solutions

April 24, 2013
AlgaeIndustryMagazine.com

One Tablespoon a Day

The four most prevalent deficiency diseases globally in 2013 are: malnutrition, nutritional anemia (iron and B12 deficiency), xerophthalmia (vitamin A deficiency), and endemic goiter (iodine deficiency). These algae therapeutic solutions are based on recent empirical medical research, including field studies in developing countries. One tablespoon of algae a day can relieve these and other nutrient deficiencies, including vitamin B, C, D, E and K.

Algae synthesize all essential vitamins, which make algae a popular food for its many consumers. One hundred times more animals eat algae than any other food probably because each cell is a treasure trove of essential nutrients, vitamins, antioxidants and minerals.

Algae absorb a wealth of mineral elements that concentrate about one third of their dry biomass. The mineral macronutrients include sodium, calcium, magnesium, potassium, chlorine, sulfur and phosphorus, while the micronutrients include iodine, iron, zinc, copper, selenium, molybdenum, fluoride, manganese, boron, nickel and cobalt. Algae typically offer three to five times more minerals per bite than terrestrial foods. In addition, algae produce dozens of therapeutic compounds such as omega-3 fatty acids that are not found in land plants or animals.

Mineral availability

Mineral availability from land plants, particularly legumes and grain, is often compromised by phytic acid, which binds the minerals rendering them unavailable for absorption into the blood stream. In one investigation, phytic acid was undetectable in four species of marine algae, and iron absorption was 3.5 fold greater for marine algae compared to rice. Algae iron is easily absorbed by the human body because its blue pigment, phycocyanin, forms soluble complexes with iron and other minerals during digestion, making iron more bioavailable. Hence, unlike iron derived from land plants, the bioavailability of algal iron is comparable to that of heme iron in meats.

Algae are rich in iodine and selenium, critical trace elements that are highly variable in food supplies by geographic region. These minerals have caused serious endemic deficiency disorders throughout history. Algae concentrate these trace minerals and only small amounts of algae (1 tablespoon) provide sufficient levels of these nutrients when introduced into the diet. Some indigenous societies gain access to these minerals, vitamins and nutrients even from non-digestible algae and seaweed by chewing algae in a cud like chewing gum.

Algae’s rich set of nutrients, antioxidants, enzymes and extracts, boost the immune system and enhance the body’s ability to grow new blood cells. Algae are rich in phytonutrients and functional nutrients that activate digestive and immune systems. Algae compounds accelerate production of the humoral system (antibodies and cytokines), allowing it to better protect against invading germs. Algal components also activate the cellular immune system including T-cells, macrophages, B-cells and anti-cancer natural killer cells.

Malnutrition

The World Health Organization, (WHO) cites malnutrition as the gravest single threat to the world’s public health. Malnutrition may occur from insufficient usable protein or deficiencies in specific essential nutrients. Algae can provide a reliable protein source with three times more protein per unit of weight than rice and twice the protein of meat. Unlike herbivore meat, algae offer all nine of the essential amino acids and nearly all the essential nutrients.

Anemia

Humans have fought anemia from iron and B vitamin deficiencies for millennia because this blood disorder still plagues mankind today. Anemia is the most common blood problem and creates a decrease in the normal number of red blood cells or less than the normal quantity of hemoglobin in the blood. Iron and B vitamins are essential for strong red blood cells and a healthy immune system. Since human cells depend on oxygen for survival, varying degrees of anemia can have severe medical consequences. Anemia causes weakness, fatigue, general malaise and brain dysfunction. Anemic children have trouble concentrating and learning. Severe anemia can cause loss of breath and cardiac arrest.

Anemia, B vitamin deficiency

Anemia, B vitamin deficiency

Vitamin A deficiency

Vitamin A deficiency

Anemia typically occurs from insufficient dietary iron. The WHO reports that iron deficiency currently affects the health and vitality of 3.5 billion people around the world. Algae are a demonstrated source of bioavailable iron, and the introduction of algae into a low iron diet increases iron absorption 3-6 fold.

B vitamin deficiency (B9, also known as folic acid or B12) is the leading cause of macrocytic anemia worldwide. In addition to the symptoms noted above, macrocytic anemia impairs female reproductive function and embryo/fetal viability. Folic acid concentrations in algae are comparable to many common fruits and vegetables. Unlike terrestrial plants, algae hold a unique place in the plant world as an adequate and reliable source of B12. Algae or algae foods buffer against anemia and the devastating impact this condition has on mental function, reproduction and physical vitality.

Vitamin A deficiency

Nearly half the children in the world today are vitamin A deficient, which causes blindness. The WHO estimates 13.8 million children to have some degree of visual loss related to vitamin A deficiency. Approximately 500,000 children in the developing world go blind each year from insufficient vitamin A and approximately half of those children die within a year of becoming blind. Night blindness and color blindness are markers of vitamin A deficiency that also can lead to impaired immune function, cancer, birth defects and maternal mortality.

Vitamin A is needed by the eye’s retina in the form of a specific metabolite, the light-absorbing molecule rhodopsin. This molecule plays a critical role in both night vision and cornea health. Vitamin A also plays an important role in other human systems including gene transcription, cardiac function, bone metabolism, haematopoiesis, skin health and antioxidant activity. In pregnant women, vitamin A deficient may disrupt embryonic development. Due to its critical role in innate immunity, the body’s first line of defense against invading pathogens, vitamin A, the ‘anti-infective’ vitamin, reduced morbidity and mortality throughout human history.

Land plants and roots contain little pre-formed vitamin A and few people in developing countries can meet their nutritional requirement through the conversion of ingested beta-carotene to retinol. The bioconversion of beta-carotene to retinol is highly variable based on the plant’s food matrix. Foods with complex matrices (fruits and vegetables including spinach and carrots) have poor conversion rates (15:1 to 27:1) compared to foods with simple food matrices. Algae have possibly the highest conversion rates for all foods (4.5:1), presumably due to its simple cell structure.

A diet of land-based plants in developing countries can lead to widespread vitamin A deficiency, which is catastrophic for human development. Algae consumption provides immediate relief from vitamin A deficiency symptoms, including the reversal of blindness in some situations. The Kanenbu tribe in Chad avoids vitamin A deficiency using a strategy they have used for centuries by adding about 10 grams (one tablespoon) of locally harvested algae to their meals each day. Various algal varieties provide ten times the beta-carotene (a provitamin A carotenoid) per pound than modern carrots. Vitamin A deficiency is often accompanied by zinc deficiency, which amplifies the health impacts. The same algae supplement provides sufficient daily zinc for adults and children.

Iodine deficiency

Over 2 billion people have insufficient iodine intake, making iodine deficiency the single largest preventable cause of mental retardation. Even moderate iodine deficiency, especially in pregnant women and infants, lowers intelligence by 10 to 15 I.Q. points. The most visible and severe effects include disabling goiters, cretinism and dwarfism. About 16% of the world’s people today have at least mild goiter, a swollen thyroid gland in the neck.The high iodine content in algae contributes to the low rates of goiter observed in countries where people frequently eat algae.

Iodine deficiency, goiter

Iodine deficiency, goiter

Skin inflammation

Skin inflammation

Immunity and wellness

Indigenous people rub algae or algal oil on their skin for sun protection, to add moisture and to speed recovery from wounds, burns and bruises. The high antioxidant activity of algae protects skin from inflammatory reactions. Other algal nutrients, vitamins and minerals enhanced physiological systems including the cardiovascular, respiratory and the nervous systems. Algal components also activate the cellular immune system including T-cells, macrophages, B-cells and anti-cancer natural killer cells. Algal polysaccharides inhibit replication of several enveloped viruses that could have been deadly for early humans including herpes simplex, influenza, measles, mumps, human cytomegalovirus and HIV-1.

Pacific Rim societies have been using algae for these and other natural remedies for centuries because they are effective. Organic chemists, medicinal chemists, biologists, and pharmacists are currently developing new anti-inflammatory medicines from algae.

Recent research suggests algae components offer therapeutic solutions to diabetes, heart disease, autoimmune diseases including arthritis as well as dementia and Alzheimer’s disease. An algal protein has been shown to stop the spread of HIV/AIDS virus and another algal protein halts the SARS virus. Certain algae species release toxins as a defense mechanism. Researchers at UCSD are growing algae and stimulating it to produce toxins, which are then harvested. These toxins are going through suppression tests for over 30 forms of cancer.

Today, many firms are prospecting algal cultivation for the production of biofuels. However, biofuels represent a low value, commodity product. Soon, many algal firms will begin exploring the production of high value advanced compounds found in algae.

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
In Phys.Org, Yu Yonehara notes the breakthrough research from the Tokyo Institute of Technology on the connection between early marine algae and the development of terres...
Kazuaki Nagata reports from Japan that while the Fukushima nuclear disaster has prompted vigorous discussion about alternative energy in Japan, there is a lack of a paral...
The Guardian reports that Prince Edward Island (P.E.I.), Canada-based Solarvest has created an inventive system utilizing a specific algal strain to grow and produce EPA ...
Jamie Radford writes in the Illawarra Mercury that Pia Winberg, from the University of Wollongong, believes that the South Coast of New South Wales, Australia (NSW) is in...
Gilbert, AZ-based Heliae has announced a partnership with Sincere Corporation, a Japanese waste management and recycling company, to form a joint venture and develop a co...
Algae manufacturer Cyanotech Corporation has announced implementing three major initiatives to improve Astaxanthin production at their Kailua Kona, Hawaii-based cultivati...
Biofuels derived from the oils produced by algae may offer a low-cost sustainable alternative to fossil fuels. To achieve this goal, optimization of cost effective strate...
Perth, Western Australia-based Algae.Tec Limited has announced that the Reliance Group has converted the first tranche of options following the positive progress achieved...
Matthew Carr was recently named executive director of the Algae Biomass Organization (ABO), the leading trade association for the algae industry. His presence will soon b...
Channelnewsasia.com reports on three young Spaniards who harvest seaweed, a culinary delicacy, as a way for them to stay out of Spain’s troubled financial waters. 35-year...
Oregon State University researchers are combining diatoms, a type of single-celled photosynthetic algae, with nanoparticles to create a sensor capable of detecting minisc...
Portuguese cement facility, Secil, and microalgae biotechnology company, A4F, also based in Portugal, have formed AlgaFarm, a joint venture to develop the use of cement f...
James “Jamie” Levine took over the reigns at Sapphire Energy in July of this year as former President and CEO Cynthia “CJ” Warner stepped down, retaining her role as chai...
Arizona is taking advantage of its open land and ample sunshine to assume a leadership position in the algae biofuel field. The state is home to two national algae testbe...
MicroBio Engineering, Inc., of San Luis Obispo, California, has introduced a full suite of open pond microalgae growth systems designed for quick deployment of research- ...
Renewable fuels company Muradel has launched Australia’s first integrated demonstration plant to sustainably convert algae into green crude, as a first step towards a com...
William Tucker writes in fullfreedom.org about the lure the oceans have for advocates of biofuel, particularly in Scandinavia. “Two-thirds of the globe is covered with wa...
In October 2014 an unusual AlgaePARC research paper entitled Design and construction of the microalgal pilot facility AlgaePARC was published in the Journal of Algal Rese...