Algae Medical Solutions – Part 2

Algae offer global nutrient deficiency solutions

April 24, 2013
AlgaeIndustryMagazine.com

One Tablespoon a Day

The four most prevalent deficiency diseases globally in 2013 are: malnutrition, nutritional anemia (iron and B12 deficiency), xerophthalmia (vitamin A deficiency), and endemic goiter (iodine deficiency). These algae therapeutic solutions are based on recent empirical medical research, including field studies in developing countries. One tablespoon of algae a day can relieve these and other nutrient deficiencies, including vitamin B, C, D, E and K.

Algae synthesize all essential vitamins, which make algae a popular food for its many consumers. One hundred times more animals eat algae than any other food probably because each cell is a treasure trove of essential nutrients, vitamins, antioxidants and minerals.

Algae absorb a wealth of mineral elements that concentrate about one third of their dry biomass. The mineral macronutrients include sodium, calcium, magnesium, potassium, chlorine, sulfur and phosphorus, while the micronutrients include iodine, iron, zinc, copper, selenium, molybdenum, fluoride, manganese, boron, nickel and cobalt. Algae typically offer three to five times more minerals per bite than terrestrial foods. In addition, algae produce dozens of therapeutic compounds such as omega-3 fatty acids that are not found in land plants or animals.

Mineral availability

Mineral availability from land plants, particularly legumes and grain, is often compromised by phytic acid, which binds the minerals rendering them unavailable for absorption into the blood stream. In one investigation, phytic acid was undetectable in four species of marine algae, and iron absorption was 3.5 fold greater for marine algae compared to rice. Algae iron is easily absorbed by the human body because its blue pigment, phycocyanin, forms soluble complexes with iron and other minerals during digestion, making iron more bioavailable. Hence, unlike iron derived from land plants, the bioavailability of algal iron is comparable to that of heme iron in meats.

Algae are rich in iodine and selenium, critical trace elements that are highly variable in food supplies by geographic region. These minerals have caused serious endemic deficiency disorders throughout history. Algae concentrate these trace minerals and only small amounts of algae (1 tablespoon) provide sufficient levels of these nutrients when introduced into the diet. Some indigenous societies gain access to these minerals, vitamins and nutrients even from non-digestible algae and seaweed by chewing algae in a cud like chewing gum.

Algae’s rich set of nutrients, antioxidants, enzymes and extracts, boost the immune system and enhance the body’s ability to grow new blood cells. Algae are rich in phytonutrients and functional nutrients that activate digestive and immune systems. Algae compounds accelerate production of the humoral system (antibodies and cytokines), allowing it to better protect against invading germs. Algal components also activate the cellular immune system including T-cells, macrophages, B-cells and anti-cancer natural killer cells.

Malnutrition

The World Health Organization, (WHO) cites malnutrition as the gravest single threat to the world’s public health. Malnutrition may occur from insufficient usable protein or deficiencies in specific essential nutrients. Algae can provide a reliable protein source with three times more protein per unit of weight than rice and twice the protein of meat. Unlike herbivore meat, algae offer all nine of the essential amino acids and nearly all the essential nutrients.

Anemia

Humans have fought anemia from iron and B vitamin deficiencies for millennia because this blood disorder still plagues mankind today. Anemia is the most common blood problem and creates a decrease in the normal number of red blood cells or less than the normal quantity of hemoglobin in the blood. Iron and B vitamins are essential for strong red blood cells and a healthy immune system. Since human cells depend on oxygen for survival, varying degrees of anemia can have severe medical consequences. Anemia causes weakness, fatigue, general malaise and brain dysfunction. Anemic children have trouble concentrating and learning. Severe anemia can cause loss of breath and cardiac arrest.

Anemia, B vitamin deficiency

Anemia, B vitamin deficiency

Vitamin A deficiency

Vitamin A deficiency

Anemia typically occurs from insufficient dietary iron. The WHO reports that iron deficiency currently affects the health and vitality of 3.5 billion people around the world. Algae are a demonstrated source of bioavailable iron, and the introduction of algae into a low iron diet increases iron absorption 3-6 fold.

B vitamin deficiency (B9, also known as folic acid or B12) is the leading cause of macrocytic anemia worldwide. In addition to the symptoms noted above, macrocytic anemia impairs female reproductive function and embryo/fetal viability. Folic acid concentrations in algae are comparable to many common fruits and vegetables. Unlike terrestrial plants, algae hold a unique place in the plant world as an adequate and reliable source of B12. Algae or algae foods buffer against anemia and the devastating impact this condition has on mental function, reproduction and physical vitality.

Vitamin A deficiency

Nearly half the children in the world today are vitamin A deficient, which causes blindness. The WHO estimates 13.8 million children to have some degree of visual loss related to vitamin A deficiency. Approximately 500,000 children in the developing world go blind each year from insufficient vitamin A and approximately half of those children die within a year of becoming blind. Night blindness and color blindness are markers of vitamin A deficiency that also can lead to impaired immune function, cancer, birth defects and maternal mortality.

Vitamin A is needed by the eye’s retina in the form of a specific metabolite, the light-absorbing molecule rhodopsin. This molecule plays a critical role in both night vision and cornea health. Vitamin A also plays an important role in other human systems including gene transcription, cardiac function, bone metabolism, haematopoiesis, skin health and antioxidant activity. In pregnant women, vitamin A deficient may disrupt embryonic development. Due to its critical role in innate immunity, the body’s first line of defense against invading pathogens, vitamin A, the ‘anti-infective’ vitamin, reduced morbidity and mortality throughout human history.

Land plants and roots contain little pre-formed vitamin A and few people in developing countries can meet their nutritional requirement through the conversion of ingested beta-carotene to retinol. The bioconversion of beta-carotene to retinol is highly variable based on the plant’s food matrix. Foods with complex matrices (fruits and vegetables including spinach and carrots) have poor conversion rates (15:1 to 27:1) compared to foods with simple food matrices. Algae have possibly the highest conversion rates for all foods (4.5:1), presumably due to its simple cell structure.

A diet of land-based plants in developing countries can lead to widespread vitamin A deficiency, which is catastrophic for human development. Algae consumption provides immediate relief from vitamin A deficiency symptoms, including the reversal of blindness in some situations. The Kanenbu tribe in Chad avoids vitamin A deficiency using a strategy they have used for centuries by adding about 10 grams (one tablespoon) of locally harvested algae to their meals each day. Various algal varieties provide ten times the beta-carotene (a provitamin A carotenoid) per pound than modern carrots. Vitamin A deficiency is often accompanied by zinc deficiency, which amplifies the health impacts. The same algae supplement provides sufficient daily zinc for adults and children.

Iodine deficiency

Over 2 billion people have insufficient iodine intake, making iodine deficiency the single largest preventable cause of mental retardation. Even moderate iodine deficiency, especially in pregnant women and infants, lowers intelligence by 10 to 15 I.Q. points. The most visible and severe effects include disabling goiters, cretinism and dwarfism. About 16% of the world’s people today have at least mild goiter, a swollen thyroid gland in the neck.The high iodine content in algae contributes to the low rates of goiter observed in countries where people frequently eat algae.

Iodine deficiency, goiter

Iodine deficiency, goiter

Skin inflammation

Skin inflammation

Immunity and wellness

Indigenous people rub algae or algal oil on their skin for sun protection, to add moisture and to speed recovery from wounds, burns and bruises. The high antioxidant activity of algae protects skin from inflammatory reactions. Other algal nutrients, vitamins and minerals enhanced physiological systems including the cardiovascular, respiratory and the nervous systems. Algal components also activate the cellular immune system including T-cells, macrophages, B-cells and anti-cancer natural killer cells. Algal polysaccharides inhibit replication of several enveloped viruses that could have been deadly for early humans including herpes simplex, influenza, measles, mumps, human cytomegalovirus and HIV-1.

Pacific Rim societies have been using algae for these and other natural remedies for centuries because they are effective. Organic chemists, medicinal chemists, biologists, and pharmacists are currently developing new anti-inflammatory medicines from algae.

Recent research suggests algae components offer therapeutic solutions to diabetes, heart disease, autoimmune diseases including arthritis as well as dementia and Alzheimer’s disease. An algal protein has been shown to stop the spread of HIV/AIDS virus and another algal protein halts the SARS virus. Certain algae species release toxins as a defense mechanism. Researchers at UCSD are growing algae and stimulating it to produce toxins, which are then harvested. These toxins are going through suppression tests for over 30 forms of cancer.

Today, many firms are prospecting algal cultivation for the production of biofuels. However, biofuels represent a low value, commodity product. Soon, many algal firms will begin exploring the production of high value advanced compounds found in algae.

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Natural carotenoid specialists Piveg Inc., with production facilities based in Celaya, Central Mexico, has announced immediate availability of natural astaxanthin materia...
University of Adelaide researchers are using nanotechnology and the fossils of diatoms to develop a novel chemical-free and resistance-free way of protecting stored grain...
The University of Greenwich is leading a €10m international project, called the ‘D-Factory,’ to build a biorefinery to develop the microalga Dunaliella as a sustainable r...
Biomass abounds on Earth, as forests, fields, sewage and seaweed. But only a small fraction, mostly human or agricultural waste, can be harvested without posing environme...
Libourne, France-based Fermentalg, an industrial biotechnology company that specializes in the production of oils and proteins derived from microalgae, has completed a su...
As the number of photobioreactors in an algae growing operation increases, there is a need for both autonomous control and monitoring of individual PBRs, as well as centr...
Although the use of whole microalgae in animal diets has long been studied, the 
de-fatted biomass of microalgal species, derived from biofuel production research, has on...
A new, outdoor system at the University of Dayton Research Institute has been producing a high volume of algae since its installation in the summer of 2013, even through ...
A University of New South Wales (UNSW)-led team of researchers has discovered how algae that survive in very low levels of light are able to switch on and off a weird qua...
Kyae Mone Win reports in the Myanmar Times that spirulina has been harvested from Twin Daung lake in Sagaing’s Bu Ta Lin township for over a decade, but climate change an...
Starting in the early 70s, agencies in the former USSR invested more than 20,000 person-years of research and development to produce Bio-Algae Concentrates (BAC) that hel...
A recent discovery in the multicellular green alga, Volvox carteri,has revealed the origin of male and female sexes, showing how they evolved from a more primitive mating...
Biofuels derived from the oils produced by algae may offer a low-cost sustainable alternative to fossil fuels. To achieve this goal, optimization of cost effective strate...
Perth, Western Australia-based Algae.Tec Limited has announced that the Reliance Group has converted the first tranche of options following the positive progress achieved...
Following a request from the European Commission, the European Food Safety Authority (EFSA) Panel on Dietetic Products, Nutrition and Allergies (NDA) was recently asked t...
Phys.Org reports that scientists Jolanda Verspagen and Jef Huisman of the University of Amsterdam, The Netherlands have concluded that rising CO2 concentrations in the at...
The EPA has released the Annual Use of Pesticides in the U.S. Report. We now know that American farmers apply roughly a billion pounds of toxic chemicals intentionally in...
Expanding from its initial work in algal biofuels, General Atomic’s (GA’s) Advanced Biological Processes team has focused on the rising need for food globally, specifical...