twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives
NCMA Algae Tips
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Commercial Algae Professionals

Process

Algae Fuels boosted by NREL process

February 9, 2016
AlgaeIndustryMagazine.com

NREL’s Integrated Biorefinery Research Facility in Golden, Colorado.

NREL’s Integrated Biorefinery Research Facility in Golden, Colorado.

Anew biorefinery process developed by scientists at the Energy Department’s National Renewable Energy Laboratory (NREL) has proven to be significantly more effective at producing ethanol from algae than previous research.

The process, dubbed Combined Algal Processing (CAP), is detailed in a new paper by NREL’s Tao Dong, Eric Knoshaug, Ryan Davis, Lieve Laurens, Stefanie Van Wychen, Philip Pienkos, and Nick Nagle. The paper, “Combined algal processing: A novel integrated biorefinery process to product algal biofuels and bioproducts,” appears in the journal Algal Research.

The research follows work previously done at NREL and published in 2014 in The Royal Society of Chemistry’s journal Green Chemistry. In that work, scientists examined two promising algal strains, Chlorella and Scenedesmus, to determine their applicability as biofuel and bioproduct producers. They concluded Scenedesmus performed better in this process with impressive demonstrated total fuel yields of 97 gallons gasoline equivalents (GGE) per ton of biomass.

Cost of algal biofuel production is still a major challenge and the Energy Department has made reducing the costs of both algae production and conversion of algal intermediates to fuels significant goals.

In traditional processes, the algae produce lipids that get converted into fuels. However, simply increasing the amount of lipids in algae isn’t expected to bring costs down enough. NREL determined further progress could be made by more completely using all algal cellular components instead of just relying on the lipids. By applying certain processing techniques, microalgal biomass can produce carbohydrates and proteins in addition to lipids, and all of these can be converted into co-products.

In their initial work, NREL researchers determined that, through the use of a solid-liquid separation process, the carbohydrates can be converted to fermentable sugars, which can then be used to produce ethanol. However, as much as 37 percent of the sugars were lost during that process. Those trapped sugars “cannot be used for fermentation without a costly washing step, resulting in a loss of overall fuel yield,” according to the Algal Research report.

In their most recent work, NREL researchers hypothesized the amount of ethanol could be significantly increased by simplifying the processing. By skipping the solid-liquid separation process and exposing all algae components directly to fermentation conditions, both ethanol (from the carbohydrate fraction) and lipids can be recovered simultaneously.

Using Scenedesmus and the CAP, and after upgrading the lipids to renewable fuels, scientists were now able to produce a total fuel yield estimated at 126 GGE per ton. That is 88 percent of the theoretical maximum yield and 32 percent more than the yield from lipids alone.

The NREL researchers also were able to recover 82-87 percent of the lipids from the CAP, even after ethanol fermentation and distillation, indicating that the initial fermentation of sugars in the pretreated biomass slurry doesn’t significantly impede lipid recovery.

These results led to the conclusion that the novel CAP process is capable of reducing the cost of algal biofuel production by nearly $10/GGE compared to a “lipids only” process, taking the modeled cost down to $9.91/GGE. While this is not nearly low enough to compete with petroleum, this approach can be combined with reduced costs for biomass production to provide a path forward to achieve that goal.

This work was funded by DOE’s Office of Energy Efficiency and Renewable Energy’s (EERE) Bioenergy Technologies Office.

NREL is the U.S. Department of Energy’s primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by The Alliance for Sustainable Energy, LLC.

More Like This…

HOME A.I.M. Archives

Copyright ©2010-2016 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Iran-based Qeshm Microalgae Biorefinery Co. (QMAB) has launched a biofuel being marketed as BAYA®, produced from a species of Nannochloropsis (strain 6016) isolated from ...
Most Americans get plenty of protein, primarily from animal products including meat, eggs and milk. But for many, ensuring a healthy protein intake can be challenging. In...
Fort Myers, FL-based Algenol has announced that the U.S. Environmental Protection Agency (EPA) has approved fuels made from Algenol’s process as an advanced biofuel, meet...
While aquafarmers in Maine have been harvesting seaweed for nearly 80 years, for a variety of uses and products, in recent years wild harvests have not been able to meet ...
Joule has announced the issuance of a patent on the direct, continuous production of hydrocarbon fuels — extending its ability to target the highest-value molecules of th...
EnAlgae researchers have published an economic model to help to explore the economics of cultivating macroalgae at sea. The model and report can be found here as outputs ...
Melissae Fellet reports in Chemical & Engineering News that new materials containing ultraviolet-absorbing molecules found in algae and reef-fish mucus could serve as...
Astaxanthin has been widely used in the aquaculture industry for pigmentation of salmon, trout and shrimp; used for its antioxidant and other health benefits in the nutra...
DENSO Corporation, Toyota Motor Corp.’s largest supplier, has announced that it will build a large test facility to culture Pseudochoricystis ellipsoidea – an oil-produci...
The new algae raceway testing facility, opening February 4 at Sandia National Laboratories in Livermore, California, paves a direct path between laboratory research and s...
CleanMalaysia.com reports that rooftop spirulina gardens are part of a burgeoning do-it-yourself urban farm project in Bangkok, Thailand’s capital. They are aimed at grow...
Northwestern University researchers have developed a quantitative tool that might help bring back coral from the brink of extinction. The novel algorithm could help asses...