Innovations


Stephen Mayfield

UCSD’s Steven Mayfield

Algae Collaboration Developing Therapeutic Proteins

Excerpted from Bruce V. Bigalow’s recent article in Xconomy.
AlgaeIndustryMagazine.com

Scientists from Sapphire Energy, UCSD, Scripps, and Protelica, have demonstrated the feasibility of using algae to produce commercial levels of human therapeutic proteins that are currently being used to treat emphysema and other diseases, or are in clinical trials for use to boost the immune system.

“The bottom line from the study is that the algae expression platform is ready for prime time,” according to UC San Diego biologist Stephen Mayfield. “We can express a very high percentage of recombinant genes — at least as good as the best system out there — and they are soluble and bioactive.”

Chlamydomonas

Chlamydomonas reinhardtii is used widely as a genetic model organism. The scientists in these studies said that the percentage of human proteins produced in their algal cultures that were properly folded in three dimensions was comparable to the fraction produced by mammalian cell cultures and much better than that produced by bacterial systems. And because algae generate their energy from sunlight and have relatively simple nutrient needs, they said the costs for using them at large scale to commercially produce human proteins should be much lower than for mammalian cell culture, which require expensive fermentation facilities.
With expected improvements in the ability to express proteins in algae, and the continued reduction in algal biomass cost associated with the large scale efforts to use algae for biofuel production, the scientists anticipate at least a ten-fold reduction in the costs over the next few years, which should make algal protein production the least expensive platform available. This reduced cost of goods, coupled with an ability to rapidly scale production in inexpensive bioreactors, suggests that algae may become an economically superior platform for therapeutic protein production in the future.

Mayfield says the findings substantiate that algae could dramatically cut the costs of making complex proteins, including interferons, antibodies, and growth factors that already are being used to treat cancer and other diseases. Such complex drugs are currently produced from mammalian or bacterial cells. Algae, though, is much less expensive to work with, and algae cells grow much more quickly—doubling in number every 12 hours.

“Obviously the scalability and cost of algae make the system attractive but, if you can’t make a high percentage of proteins, then costs don’t really matter that much,” says Mayfield, who led the study. The research, published online in Plant Biotechnology Journal, included scientists from The Scripps Research Institute (TSRI), San Diego algae biofuels company Sapphire Energy, and Protelica, (previously known as ProtElix) a Hayward, CA-based startup that specializes in protein engineering. Mayfield joined UCSD in November from TSRI, where he had worked since 1987.

chlamydomonas

UC San Diego researchers found this alga, seen from the neck of this flask, can also produce human therapeutic proteins.

Mayfield said a few months ago that a factory that uses algae to produce biotechnology drugs would be significantly cheaper to build than a traditional facility, and drug production costs would be about 75 percent lower. He contends that pharmaceutical companies could use such savings to dramatically cut the costs of some drugs that now cost consumers tens of thousands of dollars a year.

The process the scientists used to genetically modify a garden-variety green algae known as Chlamydomonas reinhardtii, was not universally successful. Of seven proteins that the group selected, Mayfield says the algae expressed four at levels sufficient for commercial production. “No one is really sure why some protein express and other don’t — that’s just the way it goes in all expression systems, ours included,” Mayfield says.

Chlamydomonas reinhardtii

Flasks of Chlamydomonas reinhardtii are shaken in the UCSD laboratory to enhance growth

Mayfield, an expert in the genetics of algae, is a co-founder of the San Diego Center for Algae Biotechnology and a scientific co-founder of Sapphire, which is developing algae-based biofuels with funding from Bill Gates’ Cascade Investments, Arch Venture Partners, and others. According to Mayfield the researchers filed patents on the technology and Sapphire holds the license.

Two years ago, Sapphire acquired Rincon Pharmaceuticals, a biotech that Mayfield co-founded to commercialize his research—which included recombinant DNA techniques for inserting human genes into algae, prompting the cells to make human proteins. Mayfield hopes to launch an algae protein expression company this year to commercialize the system, “and will be out pitching this to venture groups in the next few months.” —A.I.M.

Bruce V. Bigelow is the editor of Xconomy San Diego. You can e-mail him at bbigelow@xconomy.com or call 858-202-0492.

Photos: Beth Rasala, UCSD

Copyright ©2010 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com.

FREE Algae News & Updates

Sign up to receive breaking A.I.M. updates!

From The A.I.M. Archives

— Refresh Page for More Choices
Heliae, SCHOTT North America and Arizona State University (ASU) have announced a partnership to bring Heliae’s algae production technology to ASU’s algae testbed facility...
The University of Greenwich is leading a €10m international project, called the ‘D-Factory,’ to build a biorefinery to develop the microalga Dunaliella as a sustainable r...
One of 12 winners of the 2014 Lexus Design Award, the Ooho algae balloon was created by three London-based designers to contribute a solution to the rising number of plas...
Students from three Arizona universities will demonstrate their algae research projects at an Innovation Showcase May 1, in Arizona State University’s Sun Devil Fitness C...
A series of articles by Stephen Mayfield and the UCSD Laboratory deserve recognition for their articles on algae-based medicines for malaria and cancer. Mayfield and his ...
A team of six University of Calgary researchers has been awarded funding for their project, Cost Effective Biotechnology for Carbon Capture and Re-Use, based on the conce...
The Algae Biomass Organization (ABO) released the following statement calling on the EPA to include Carbon Capture and Utilization strategies in rules proposed June 2, 20...
Gilbert, AZ-based Heliae has announced a partnership with Sincere Corporation, a Japanese waste management and recycling company, to form a joint venture and develop a co...
Channelnewsasia.com reports on three young Spaniards who harvest seaweed, a culinary delicacy, as a way for them to stay out of Spain’s troubled financial waters. 35-year...
Phys.Org reports that scientists Jolanda Verspagen and Jef Huisman of the University of Amsterdam, The Netherlands have concluded that rising CO2 concentrations in the at...
The EPA has released the Annual Use of Pesticides in the U.S. Report. We now know that American farmers apply roughly a billion pounds of toxic chemicals intentionally in...
Using a combination of satellite imagery and laboratory experiments, researchers have evidence showing that viruses infecting those algae are driving the life-and-death d...
Expanding from its initial work in algal biofuels, General Atomic’s (GA’s) Advanced Biological Processes team has focused on the rising need for food globally, specifical...
SCHOTT AG, of Mitterteich, Germany, and Algatechnologies Ltd. (Algatech), based at Israel’s Kibbutz Ketura, have signed an R&D agreement to strengthen their partnersh...
Biplab Das reports in NatureAsia.com that a research team has found aqueous extracts of the marine brown algae Lobophoro variegate that can inhibit the replication of hum...
U.S. farmers and biofuels makers are watching for the Environmental Protection Agency’s (EPA’s) final decision on the 2014 Renewable Fuel Standard rules, which will set t...
Arizona is taking advantage of its open land and ample sunshine to assume a leadership position in the algae biofuel field. The state is home to two national algae testbe...
A team of Michigan State University algae researchers have discovered a cellular "snooze button" that has the potential to improve biofuel production and offer ...