twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Research

Algae can switch quantum coherence on and off

June 18, 2014
AlgaeIndustryMagazine.com

cryptophytes

Scanning electron microscope image of cryptophytes (photo: CSIRO)

AUniversity of New South Wales (UNSW)-led team of researchers has discovered how algae that survive in very low levels of light are able to switch on and off a weird quantum phenomenon that occurs during photosynthesis. The function in the algae of this quantum effect, known as coherence, remains a mystery, but it is thought it could help them harvest energy from the sun much more efficiently.

Working out its role in a living organism could lead to technological advances, such as better organic solar cells and quantum-based electronic devices. The research is published in the journal Proceedings of the National Academy of Sciences.

It is part of an emerging field called quantum biology, in which evidence is growing that quantum phenomena are operating in nature, not just the laboratory, and may even account for how birds can navigate using the earth’s magnetic field.

“We studied tiny single-celled algae called cryptophytes that thrive in the bottom of pools of water, or under thick ice, where very little light reaches them,” says senior author, Professor Paul Curmi, of the UNSW School of Physics. “Most cryptophytes have a light-harvesting system where quantum coherence is present. But we have found a class of cryptophytes where it is switched off because of a genetic mutation that alters the shape of a light-harvesting protein.

“This is a very exciting find. It means we will be able to uncover the role of quantum coherence in photosynthesis by comparing organisms with the two different types of proteins.”

In the weird world of quantum physics, a system that is coherent – with all quantum waves in step with each other – can exist in many different states simultaneously, an effect known as superposition. This phenomenon is usually only observed under tightly controlled laboratory conditions.

So the team, which includes Professor Gregory Scholes from the University of Toronto in Canada, was surprised to discover in 2010 that the transfer of energy between molecules in the light harvesting systems from two different cryptophyte species was coherent.

The same effect has been found in green sulphur bacteria that also survive in very low light levels. “The assumption is that this could increase the efficiency of photosynthesis, allowing the algae and bacteria to exist on almost no light,” says Professor Curmi.

“Once a light-harvesting protein has captured sunlight, it needs to get that trapped energy to the reaction center in the cell as quickly as possible, where the energy is converted into chemical energy for the organism.

“It was assumed the energy gets to the reaction center in a random fashion, like a drunk staggering home. But quantum coherence would allow the energy to test every possible pathway simultaneously before travelling via the quickest route.”

In the new study, the team used x-ray crystallography to work out the crystal structure of the light-harvesting complexes from three different species of cryptophytes. They found that in two species a genetic mutation has led to the insertion of an extra amino acid that changes the structure of the protein complex, disrupting coherence.

“This shows cryptophytes have evolved an elegant but powerful genetic switch to control coherence and change the mechanisms used for light harvesting,” says Professor Curmi.

The next step will be to compare the biology of different cryptophytes, such as whether they inhabit different environmental niches, to work out whether the quantum coherence effect is assisting their survival.

The team was led by UNSW’s Dr Stephen Harrop and Dr Krystyna Wilk, and includes researchers from the University of Toronto, the University of Padua, the University of British Columbia, the University of Cologne and Macquarie University.

Read More

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2014 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Tyler Treadway of TCPalm reports on technology joining the fight in response to the Florida algae blooms. He watches, as water from a boat basin topped with several inche...
Tafline Laylin writes for Inhabitat.com about the elegant solution that Romanian designer Alexandru Predonu has conceived that uses solar energy to power a rotating desal...
For plants and algae that carry on photosynthesis, light can be too much of a good thing. On a bright, sunny day, a plant might only be able to utilize 20 percent or less...
Jill Fehrenbacher writes in inhabitat.com that when it comes to design, Mother Nature has a lot to teach us. The field of Biodesign has emerged as an exciting new discipl...
Since hydrogen fuel cells produce electricity, we are increasingly thinking about hydrogen as a successor to crude oil. But where will the hydrogen come from? Its ecologi...
Agcore Technologies LLC, producer of Agcore Spirulina, has announced that their 2016 expansion project to support their growing aquafeed demand is in the completion proce...
Haley Gray reports for 5280.com that Upslope Brewing Company, in Boulder, Colorado, is one step closer to its goal of becoming a zero-waste brewery. The craft beer maker ...
Portuguese microalgae producer, Allmicroalgae Natural Products S.A., has moved to the next stage in development of new production technologies to grow Nannochloropsis oce...
Joy Lanzendorfer reports for NPR that, as seaweed continues to gain popularity for its nutritional benefits and culinary versatility, more people are taking up seaweed fo...
Dan Wood, at the University of Connecticut, writes that assistant extension educator of marine aquaculture at UConn’s Avery Point Campus, Anoushka Concepcion, spoke about...
A Quebec-based company that specializes in the manufacturing and commercialization of marine and seaweed-based products for agriculture and horticulture constructed a new...
Matt Stultz writes in MakeZine.com about Algix’ unique 3-D printing filament created with a combination of algae and Polylactic Acid (PLA) – a biodegradable thermoplastic...