Algae Business by Riggs Eckelberry It’s Time to Set Uniform Algae Feedstock Standards

It’s Time to Set Uniform Algae Feedstock Standards

September 21, 2011

As algae oil gears up to industrial scale production, we must develop uniform standards. Producers, refiners, distributors and the public face the same issues as late nineteenth century petroleum oil, as it diversified function and expanded volume, from its early role as a metal lubricant. Then as now, industry and the public needed consistent, reliable purity, durability, transportability, and environmental impact management.

That is why, as he began transforming kerosene into a national mass lighting commodity, John D. Rockefeller called his industrial empire “Standard Oil.” The new scale of mass refining, transportation, and distribution required convincing both a skeptical buying public and fledgling governmental regulators that kerosene was as safe and smokeless as whale oil.

Layers of Industry Standards

Earning public trust and regulators’ confidence required layers of standards for refining, containerization, transportation, piping, wholesale and retail storage, and the eventual retail sale. Common standards generated cooperation among fierce competitors so different brands could be blended in the same barrels and lanterns.

As the petroleum industry again switched function and volume from lighting and kerosene to transportation and gas, it faced even greater standardization challenges. A national system of railway tanker cars, pipelines, and quality assurance came together to realize standards to get product to market while earning growing public trust.

Whatever our opinion of Rockefeller and Standard Oil, they made kerosene and gas safer and cleaner for mass consumption. They standardized petroleum to become the fuel that made trucks and cars, for better and worse, the world’s dominant transportation.

Algae at a Threshold

Today the algae industry is positioned at a similar threshold. We must adopt standards of purity, utility, environmental impact, energy content, durability and public safety to refiners, transporters, distributors, retailers and the public.

Unlike Rockefeller’s day, governmental agencies are now sophisticated, with advanced evaluative technical capacity. They are also generally accepted. Politicians debate the appropriate size, role and scope of regulation; but no one seriously questions that the federal government must be responsible for ensuring public safety and environmental protection for transportation fuels, medicines and foods – all potential end-uses of algae.

Governmental regulation is also necessary and good for the industry itself. Consider the early American railroads of the early nineteenth century. Fiercely independent and stubbornly territorial, railroad companies successfully resisted regulation until they discovered how much the different gauge tracks (so that one company’s trains could not ride another’s rails) irritated the riding public and prevented commercial shippers from transferring from canals and open water shipping.

Petroleum oil took almost a century to develop contemporary industrial standards, which even now fall short of many environmental protections. We lack that kind of time. Petroleum dependence and climate and oceanic change are national and global emergencies that require effective, safe biofuel standards right now.

Launching the Standards Process

Last summer, the Department of Energy’s Idaho National Laboratory (INL) worked with independent scientists, universities, research institutions, and industry to develop densification standards for biomass feedstocks. The laboratory invited these stakeholders to the Biomass Preconversion and Densification Workshop, held on 23 and 24 August in Idaho Falls.

The first goal of these feedstock standards is to facilitate blending among all fuel-producing biomass feedstocks. Blending will enable scale-up that is currently impractical from single-crop silos.

As seen in the workshop presentations, the Department of Energy (DOE) wants refiners and producers to blend together woody, plant, and algal formatted feedstocks into regional depots sufficiently dispersed to cover the entire nation. These depots will make available liquid and solid biofeedstocks deliverable within existing distribution infrastructure, including distribution to refiners, and end users.

These standards will make possible a concentrated, stable, “densified” Uniform Intermediate Feedstock (UIF). They are “Uniform” to enable blended, common refining, transportation and distribution. They are “Intermediate” because they are the first step after raw biomass.

Algae’s Distinctive Difference

Among feedstocks, algae is distinctive. At harvest, algae may be diluted as much as 5000:1 in water, thus requiring a unique set of standards. At least one version of the UIF must be liquid enough to be pumped and piped, but dense enough to avoid wasting energy by processing water and air. This, then, is an oily, dewatered slurry we might call “algae crude”. Another standard will probably define a granular algal powder to blend with other biomasses. A third will likely define solid formats such as pellets and bricks for use with combustion, gasification, livestock feed, and soil nutrients, available in both food and combustion grades, and in both oily and de-oiled variants.

In other respects, algae’s challenges in meeting new standards are inverse to those for plants or wood. Other biofeedstocks must ensure that their ingredients generate enough BTUs. By contrast, algae feedstock generates abundant energy, as it is essentially newly-created petroleum.

But we must make sure that our feedstock is dense enough so that pumps, refineries and pipes efficiently transport algae crude, rather than wasting energy pumping, piping, and carrying water and air. This risks the common danger of expending more energy than what is produced.

Like all fuels and feedstocks, “algae crude” needs rigorous, defensible, effective and ‘green’ publicly accountable standards. We are already at the table, with the prospect of increased contributions to total biofuel supply, and to the feedstocks that produce them.

Achieving the Promise

It’s an exciting, hopeful prospect that will mean our sector finally plays a role that matches its enormous promise, and responsibility.

At stake are not only production costs, but also the immediate and long-range growth of potential markets. As the only alternative to petroleum that can scale without affecting fresh water, food supplies or cropland, algae deserves a set of standards that will get us into the mainstream of the new national biofuel supply. That we can reduce carbon dioxide emissions and remediate water pollution as well, only adds to our synergy and our promise.

Even more urgent and important than developing common production standards is winning the trust and support of the public and regulators. This factor alone is so powerful that it could help us achieve wide acceptance of industry standards for algae applications in just a few, critical years.

Go to HOME Page

Copyright ©2010-2015 All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Cellana, Inc., with operations in San Diego and Kailua-Kona, Hawaii, has announced that David Anton, Ph.D., has been appointed Chief Operating Officer and elected to the ...
The U.S. Environmental Protection Agency (EPA) is developing an early warning indicator system using historical and current satellite data to detect algal blooms. EPA res...
UC San Diego’s efforts to produce innovative and sustainable solutions to the world’s environmental problems have resulted in a partnership with the region’s surfing indu...
Scientists from the J. Craig Venter Institute (JCVI), a not-for-profit genomic research organization in La Jolla, California, have published a paper outlining new synthet...
Algae “red tide” events often create dazzling nighttime light shows of blue-green bioluminescence resulting from the force generated by breaking waves. While many mysteri...
Scientific representatives from the EnAlgae consortium are announcing preliminary results this week from a key algal carbon capture project in the works at Britain’s larg...
The fully automated plant at the Fraunhofer Center for Chemical-Biotechnological Processes CBP in Leuna, Germany, was designed to produce microalgae at industrial scale. ...
OriginClear Inc. and partner AlgEternal have announced that, based on AlgEternal’s field tests, they believe their pure algae concentrate, harvested with OriginClear tech...
Tom Redmond and Yuko Takeo report for that, after 10 years of developing algae as a nutritional supplement generating $37.8 million in annual revenue, Japan...
Biocrude oil obtained from hydrothermal liquefaction (HTL) of algae can be an energy-efficient replacement for the fossil crude oil normally used in the production of fue...
Bigelow Laboratory, of East Boothbay, Maine, and the University of Mississippi have formed a five-year Strategic Inter-Institutional Partnership Agreement for collaborati...
Nitrogen and phosphate nutrients are among the biggest costs in cultivating algae for biofuels. Sandia National Laboratories molecular biologists Todd Lane and Ryan Davis...