Algae and National Security – Part 2

Algae and Food Security with Water Extinction

November 4, 2012
AlgaeIndustryMagazine.com

Whisky is for drinking; water is for fighting over.  –Mark Twain

Imagine a new food supply free of freshwater consumption. Water independence for food production would save water and avoid war. A Green Algae Strategy for growing algae-based foods in non-potable water offers a strategic alternative to water scarcity and war.

Political leaders, scientists, authors and farmers predict that wars of the future will be fought over blue gold. Hot, thirsty people, farmers, cities, opportunistic politicians and powerful corporations will battle for dwindling water supplies.

A March 2012 report from the office of the U.S. Director of National Intelligence reported the risk of conflict would grow, as water demand will outstrip sustainable current supplies by 40% by 2030. The U.S. Secretary of State, Hilary Clinton said: “These water threats are real and they raise serious national security concerns.”

Rapid population growth and increased industrial demand have tripled water withdrawals over the last 50 years. The U.S Senate report, Avoiding Water Wars: Water Scarcity and Central Asia’s growing Importance for Stability in Afghanistan and Pakistan, makes it clear water security is a national security issue.

Adel Darwish reports in Water Wars: Coming Conflicts in the Middle East, documented water wars throughout history. They were brutal and often left both sides with food insecurity and starvation.

Sources predicting Water Wars

Sources predicting Water Wars

A recent U.N. study reported 18 countries are water scarce today and projects that 30 nations will be water-scarce in 2025. A majority of water-scarce nations are located across the Middle East and North Africa. It is no coincidence that water-scarce nations include the recent Arab Spring revolutions. Water-scarce countries will have to buy their food on the world market, which puts them at risk to price fluctuations. Internationally, 780 million people lack access to safe drinking water, according to the U.N. By 2030, 47% of the world’s population will be living in areas of high water stress. What will societies do for water and food?

Water extinction

Water extinction occurs when water becomes unaffordable or unavailable locally. Practically all food-growing regions are living with the threat of water extinction. Global warming accelerates water loss from crops and soil. Farmers measure soil moisture and in irrigated areas, add more water when soil moisture dries. In rain-fed areas, crops fail with too much heat and due to lack of soil moisture. Plants cannot use water to pull nutrients from their roots. An irrigated corn crop requires about 250,000 gallons of water per ton in a normal year but in a hot year, may consume 750,000 gallons per ton.

Grain Crops with insufficient Water

Grain Crops with insufficient Water

Water and food

Food production depends on fresh water – lots of it. People consume about one gallon of water a day in their beverages. Growing the food the typical person consumes in one day requires about 500 times more water; 528 gallons.

Over one-third of productive cropland depends on irrigation. Irrigation delivers water equivalent to about 2% of the annual precipitation over land. Globally, irrigation for crop production claims about 70% of all freshwater, and about 80% in the western U.S.

The history of irrigation is replete with failures of cities and societies due to soil waterlogging, salt invasion and depletion of water supplies. With the demand for water growing steadily among the major consumers—agriculture, residential and industry—competition is intensifying. In water wars, farmers almost always lose to money—cities and industry.

The planet held far too little fresh water to support food production for expanding populations even before global warming began melting and evaporating our ice caps, glaciers, snow packs and reservoirs. Faucets and fountains are going dry because farmers extract massive amounts of stored fossil groundwater reserves that were laid down millions of years ago. Fossil aquifers that do not recharge with annual rains are being depleted rapidly. Many aquifers will go dry in this generation and some have already crashed.

Water creates the primary limitation to food production because lacking available fresh water, crops quickly become thirsty and wilt, stunt or die. Without sufficient freshwater delivered on time, crops fail and the land reverts to its natural state—which in much of the world is prairie or desert. When groundwater fails, human populations are forced to migrate to where water is available.

Crop yields

Production and yield are directly related to water use. Insufficient applied water stresses crops and decreases yield. More irrigation has doubled food production over the last 30 years but at the unsustainable expense of tripling the freshwater consumed.

Much of the 300% increase in water consumption occurred because new croplands expanded into deserts. Desert regions are productive due to the considerable solar energy but the heat consumes more water from transpiration (plant water losses) and soil moisture evaporation. Irrigation systems often lose 50% of the available water before the water reaches the crops from pipeline and canal leaks as well as evaporation.

Animals and Water Scarcity

Animals and Water Scarcity

Today, when the number of hungry people has reached record highs in America and the world, acute water scarcity has struck countries in the Middle East and North Africa, as well as Mexico, Pakistan, South Africa, the United States and large parts of China and India.Iran was forced to import over a million tons of grain from the U.S. in 2007 because their crops failed due to heat and drought.

The 2010 floods in China, India and Pakistan would seem to break the water scarcity problem. Unfortunately, floods move enormous amounts of water, mud and debris at very high speed that does not percolate into aquifers. Floods create chaos as they break dams, fill reservoirs and canals with silt and destroy irrigation systems. Floods devastate crops, kill farm animals, pollute groundwater and ruin equipment.

Floods destroy Infrastructure for Food Production

Floods destroy Infrastructure for Food Production

Rational government policy would limit irrigation to sustainable yields from surface sources and groundwater held in aquifers. Instead, government policies in the U.S. and globally have encouraged maximizing short-term food production by subsidizing water, including its transportation, delivery and the energy needed for pumping. When a commodity has a near-zero cost, users waste it. Inefficient and over irrigation wastes trillions of gallons of freshwater each year. Over-pumping at several times the sustainable yield has resulted in plunging water tables on every food-growing continent. Many aquifers are falling at 10 feet a year and several major aquifers in China, India and the U.S. will crash before 2030.

A water-free food supply

How would a water independent food supply work?

PEACE microfarms offer a novel approach to avoid conflicts over freshwater because microfarms grow food in non-potable water. Less than 3% of the water on the planet is fresh and only 1% of freshwater is available to people. Microfarms can use the other 97%, waste, brine or ocean water. Planet Enriching Algae Cultivation Ecosystems, (PEACE) microfarms use abundance methods that enable growers distributed globally to recycle nutrients and energy from sterilized waste streams.

Today, most people cannot grow food locally because they lack good weather or fresh water. When fully developed, PEACE microfarms will allow individuals and communities globally to use affordable inputs to grow foods locally. PEACE microfarms grow food and other forms of energy sustainably, independent of climate, altitude, latitude, geography or politics.

PEACE microfarms are adaptable microcrop platforms that enable growers to use low cost inputs to cultivate a wide variety of high value products. Microfarmers practice abundance and use green solar – sunshine – for energy. They may recycle organic inputs from farms, gardens, kitchens or other waste streams that are surplus, low-cost or free. Growers cultivate microorganisms such as algae and the microflora algae attract to produce food for people, feed for fish, fowl, dairy, and meat animals. Other growers grow and flow their culture to produce rich organic biofertilizer for gardens or fields.

Microfarms under Development

Microfarms under Development

Growers practicing abundance are essentially green solar gardeners as they transform solar energy to rich, nutritious plant biomass. The green biomass concentrates energy in chemical bonds that are portable and may be used directly for food or transformed to many other forms of energy. Microfarms grow naturally biodiverse microcrops, so no genetically engineered seeds are needed.

Microfarmers use four configurations. Estimated yield compares with field crop protein production.

Microfarm Configurations

Microfarm configuration Estimated yield
1. Open pond or raceway 10 times
2. Covered pond or raceway  20 times
3. Semi-closed culture  25 times
4. Closed or controlled environment  30+ times

spacer

Covered microfarms allow growers to extend the season by two to four months. Semi-closed and closed systems allow year-round production, independent of weather. Microfarmers train indigenous, local algae to produce proteins, oils, carbohydrates and other co-products rapidly. Some growers cultivate exotic species from algae collections but locally adapted species are typically the highest performers.

Green Algae Water Security Strategy

What water strategy makes the most sense for our children?

  1. Continuing down the path with industrial agriculture where food production consumes 70% of freshwater globally?
  2. Creating a new path with PEACE microfarms that provide a healthier food supply while consuming no or minimal freshwater?

Since we know freshwater supplies are going to run out, why not choose a sustainable and affordable food supply that preserves scarce freshwater for our next generation?

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Natural carotenoid specialists Piveg Inc., with production facilities based in Celaya, Central Mexico, has announced immediate availability of natural astaxanthin materia...
Scientists at the Energy Department’s National Renewable Energy Laboratory (NREL) have demonstrated that just two of six iron-sulfur-containing ferredoxins in a represent...
Yereth Rosen reports in the Anchorage Daily News that scientists at North Carolina State University’s Plants for Human Health Institute have found extremely high levels o...
Algenist®, Solazyme’s anti-aging skincare brand featuring microalgae, has announced its launch in Nordstrom locations throughout the United States. The launch into Nordst...
A team of six University of Calgary researchers has been awarded funding for their project, Cost Effective Biotechnology for Carbon Capture and Re-Use, based on the conce...
Santa Fe Community College has been awarded a $50,000, SEED Infrastructure Grant from the Experimental Program to Stimulate Competitive Research (EPSCoR), for commercial ...
In Phys.Org, Yu Yonehara notes the breakthrough research from the Tokyo Institute of Technology on the connection between early marine algae and the development of terres...
Jamie Radford writes in the Illawarra Mercury that Pia Winberg, from the University of Wollongong, believes that the South Coast of New South Wales, Australia (NSW) is in...
Algae Industry Magazine is pleased to announce a new Algae 101 series by our popular blogger, Mark Edwards, Professor, Arizona State University. The Algae Solutions to Na...
Biofuels derived from the oils produced by algae may offer a low-cost sustainable alternative to fossil fuels. To achieve this goal, optimization of cost effective strate...
Perth, Western Australia-based Algae.Tec Limited has announced that the Reliance Group has converted the first tranche of options following the positive progress achieved...
Matthew Carr was recently named executive director of the Algae Biomass Organization (ABO), the leading trade association for the algae industry. His presence will soon b...
Phys.Org reports that scientists Jolanda Verspagen and Jef Huisman of the University of Amsterdam, The Netherlands have concluded that rising CO2 concentrations in the at...
Oregon State University researchers are combining diatoms, a type of single-celled photosynthetic algae, with nanoparticles to create a sensor capable of detecting minisc...
Researchers at the Paul Scherer Institute (PSI) in Wädenswil, Switzerland, have succeeded in producing energy-rich gas from microalgae, and in doing so have demonstrated ...
U.S. farmers and biofuels makers are watching for the Environmental Protection Agency’s (EPA’s) final decision on the 2014 Renewable Fuel Standard rules, which will set t...
Arizona is taking advantage of its open land and ample sunshine to assume a leadership position in the algae biofuel field. The state is home to two national algae testbe...
With their new CO₂ processing-platform called AstaCos, AlgaeBiotech can produce waxy particles of only 50-100 µm in size with a loading of 25% astaxanthin oleoresin. The ...