Click here for more information about Algenuity
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Research

An alga-rithm to save the coral

June 16, 2016
AlgaeIndustryMagazine.com

With the increasing sea surface temperatures, particularly in the tropical Pacific and Indian oceans, coral bleaching is predicted to become more severe. Coral with thermotolerant algae often recover from bleaching or do not bleach at all.

With the increasing sea surface temperatures, particularly in the tropical Pacific and Indian oceans, coral bleaching is predicted to become more severe. Coral with thermotolerant algae often recover from bleaching or do not bleach at all.

Northwestern University researchers have developed a quantitative tool that might help bring back coral from the brink of extinction. The novel algorithm could help assess and predict the future of coral bleaching events by better understanding the coral’s symbiotic partner: algae.

“Coral is not an independent organism,” said Luisa Marcelino, research assistant professor of civil and environmental engineering at Northwestern’s McCormick School of Engineering. “It depends on algae that live in its tissue to give it food. High temperatures break up that partnership, and the coral essentially starves.”

But this does not happen in every case. Some genetic types of algae are more tolerant of climate change’s increasing temperatures. Bleaching happens when stressed corals expel their life-providing algae, turning reefs stark white as their skeletons show through. Coral with thermotolerant algae often recover from bleaching or do not bleach at all. “Coral not associated with thermotolerant algae are at the biggest risk,” Dr. Marcelino said.

There are more than 400 different types of this Symbiodinium algae and thousands of different coral reefs. This expanse – combined with the fact that algae are challenging to cultivate in the laboratory – have made it incredibly difficult to fully study and understand algae’s susceptibility to heat.

The Northwestern team’s algorithm combines all algae studies published prior to February 2015 to rank which genetic types are most thermotolerant and which are the most thermosensitive. The results are published online in Functional Ecology. Northwestern Engineering’s Vadim Backman, Walter Dill Scott Professor of Biomedical Engineering, co-authored the paper. Timothy Swain, a postdoctoral fellow in Dr. Marcelino’s lab, and John Chandler, a graduate student in Dr. Backman’s lab, served as the paper’s co-first authors.

Earlier this spring, Dr. Marcelino’s group published the first global index to standardize measurements of different coral species’ vulnerability to thermal stress. This algorithm, which ranks vulnerability of 110 of the most common genetic types of algae, is a companion piece. Drs. Marcelino and Swain anticipate that as the more rare algae types are further studied, the algorithm will eventually include rankings for all different genetic types. “The first study was just half of the story,” Dr. Marcelino said. “Together, these studies show a complete picture.”

The need to better understand coral’s partnership with algae is particularly dire, as the world is currently experiencing the longest global coral bleaching event ever recorded. Knowing which coral colonies are associated with more thermosensitive algae can help conservationists focus their efforts. Those sensitive colonies could be shielded from further risk factors, such as tourism, overfishing, and pollution, to aid preservation. Pinpointing the most thermotolerant algae could also help researchers breed more robust coral in the laboratory.

“The bleaching we are experiencing now is unprecedented,” Dr. Swain said. “Entire populations are collapsing under climate change. We need more information now to give to people who can take action.”

Drs. Marcelino and Swain’s novel iterative algorithm is based on partial rank aggregation, which allows for and reconstructs unresolved or incomplete comparisons of thermotolerance among genetic types. “We developed the algorithm to solve a problem on our end,” Dr. Marcelino said, “but it has enormous applications for any field.”

More Like This…

Copyright ©2010-2018 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
The Utah Science Technology and Research (USTAR) initiative, a technology-based economic development program funded by the state of Utah, has awarded a $175,320 grant for...
Cody Nelson writes for MPRNews.org that a team of University of Minnesota-Duluth researchers wanted to know how shortening winters — and less ice cover on lakes — might i...
At the Technical University of Denmark (DTU), Science Nordic.com reports, researchers are investigating bioluminescent algae, to determine whether bioluminescent organism...
Israeli-based Algatechnologies, Ltd. (Algatech), is teaming up with the Italian R&D company, Sphera Encapsulation S.r.l (Sphera), to develop innovative functional ingredi...
Sophie Kevany writes in Decanter.com that a group of vineyards in France’s Bordeaux and Cognac regions are exploring whether algae can be used to prevent the fungal infec...
Dartmouth scientists have created a more sustainable feed for aquaculture by using a marine microalga co-product as a feed ingredient. The study is the first of its kind ...
Alexander Richter writes in thinkgeoenergy.com that Israel-based Algaennovation last week signed a 15-year contract with Icelandic energy utility and operator ON Power fo...
Cécile Barbière writes for Euractive.fr (translated by Rob Kirby) that, in large greenhouses formerly home to the tomatoes and cucumbers of the market gardening Groupe Ol...
Alexander Richter reports for Geothermal Energy News that, among the many examples offered during a recent conference in Pisa, Italy, on Perspectives and Impact of the Gr...
Julianna Photopoulos writes in Horizon EU Research and Innovation magazine that UK start-up Skipping Rocks Lab aims to use natural materials extracted from plants and sea...
AlgaEnergy, a Spanish biotechnology company specializing in the production and commercial applications of microalgae, and Yokogawa Electric Corporation, a leading provide...
London-based architectural and urban design firm ecoLogicStudio www.ecologicstudio.com, led by Claudia Pasquero and Marco Poletto, has unveiled Photo.Synth.Etica, a large...