Click here for more information about Algenuity
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Research

An alga-rithm to save the coral

June 16, 2016
AlgaeIndustryMagazine.com

With the increasing sea surface temperatures, particularly in the tropical Pacific and Indian oceans, coral bleaching is predicted to become more severe. Coral with thermotolerant algae often recover from bleaching or do not bleach at all.

With the increasing sea surface temperatures, particularly in the tropical Pacific and Indian oceans, coral bleaching is predicted to become more severe. Coral with thermotolerant algae often recover from bleaching or do not bleach at all.

Northwestern University researchers have developed a quantitative tool that might help bring back coral from the brink of extinction. The novel algorithm could help assess and predict the future of coral bleaching events by better understanding the coral’s symbiotic partner: algae.

“Coral is not an independent organism,” said Luisa Marcelino, research assistant professor of civil and environmental engineering at Northwestern’s McCormick School of Engineering. “It depends on algae that live in its tissue to give it food. High temperatures break up that partnership, and the coral essentially starves.”

But this does not happen in every case. Some genetic types of algae are more tolerant of climate change’s increasing temperatures. Bleaching happens when stressed corals expel their life-providing algae, turning reefs stark white as their skeletons show through. Coral with thermotolerant algae often recover from bleaching or do not bleach at all. “Coral not associated with thermotolerant algae are at the biggest risk,” Dr. Marcelino said.

There are more than 400 different types of this Symbiodinium algae and thousands of different coral reefs. This expanse – combined with the fact that algae are challenging to cultivate in the laboratory – have made it incredibly difficult to fully study and understand algae’s susceptibility to heat.

The Northwestern team’s algorithm combines all algae studies published prior to February 2015 to rank which genetic types are most thermotolerant and which are the most thermosensitive. The results are published online in Functional Ecology. Northwestern Engineering’s Vadim Backman, Walter Dill Scott Professor of Biomedical Engineering, co-authored the paper. Timothy Swain, a postdoctoral fellow in Dr. Marcelino’s lab, and John Chandler, a graduate student in Dr. Backman’s lab, served as the paper’s co-first authors.

Earlier this spring, Dr. Marcelino’s group published the first global index to standardize measurements of different coral species’ vulnerability to thermal stress. This algorithm, which ranks vulnerability of 110 of the most common genetic types of algae, is a companion piece. Drs. Marcelino and Swain anticipate that as the more rare algae types are further studied, the algorithm will eventually include rankings for all different genetic types. “The first study was just half of the story,” Dr. Marcelino said. “Together, these studies show a complete picture.”

The need to better understand coral’s partnership with algae is particularly dire, as the world is currently experiencing the longest global coral bleaching event ever recorded. Knowing which coral colonies are associated with more thermosensitive algae can help conservationists focus their efforts. Those sensitive colonies could be shielded from further risk factors, such as tourism, overfishing, and pollution, to aid preservation. Pinpointing the most thermotolerant algae could also help researchers breed more robust coral in the laboratory.

“The bleaching we are experiencing now is unprecedented,” Dr. Swain said. “Entire populations are collapsing under climate change. We need more information now to give to people who can take action.”

Drs. Marcelino and Swain’s novel iterative algorithm is based on partial rank aggregation, which allows for and reconstructs unresolved or incomplete comparisons of thermotolerance among genetic types. “We developed the algorithm to solve a problem on our end,” Dr. Marcelino said, “but it has enormous applications for any field.”

More Like This…

Copyright ©2010-2018 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
Monica Jain of Fish 2.0 writes in National Geographic about how the algae brand is about to undergo an image makeover, and may soon seem flat-out glamorous — once again. ...
David Erickson writes in the (Montana) Missoulian that Clearas Water Recovery, a Missoula tech company formed eight years ago, has developed a patented process to use alg...
Adoption of advanced technologies in various stages of natural astaxanthin production, such as microalgae harvesting, cultivation, extraction, and drying, have been major...
A Bay Area company has patented a group of three single-celled, algae-like organisms that, when grown together, can produce high quantities of sugar just right for making...
The United States Department of Energy (DOE) announced that the University of New England was awarded a three-year, nationally competitive research grant for $1,321,039 f...
Malaysia-based Algaetech International, a pioneer algae technology company specializing in R&D, as well as production and commercialization of algae-derived high valu...
Watertechonline.com reports that the All-Gas project in the El Torno treatment plant in Chiclana, in southwestern Spain, in the province of Cádiz, has started its demonst...
The Utah Science Technology and Research (USTAR) initiative, a technology-based economic development program funded by the state of Utah, has awarded a $175,320 grant for...
Cody Nelson writes for MPRNews.org that a team of University of Minnesota-Duluth researchers wanted to know how shortening winters — and less ice cover on lakes — might i...
Hayley Dunning writes from the Imperial College of London that a new discovery has changed our understanding of the basic mechanism of photosynthesis and should rewrite t...
Amy Thompson writes in Space.com that SpaceX successfully launched its 15th Space Station cargo-resupply mission on Friday, June 29; carrying a payload of experiments des...
San Diego, CA and Kailua-Kona, HI-based Cellana, Inc. has signed an Asset Purchase Agreement with Cyanotech Corporation for the sale of Cellana’s six-acre production and ...