[ad#PhycoBiosciences AIM Interview]

Scale Up

Paddlewheel at Arizona State University Research Center

Paddlewheel at Arizona State University Research Center

A.I.M. Interview: Waterwheel Factory’s Bob Vitale

October 9, 2012, by David Schwartz
AlgaeIndustryMagazine.com

Bob Vitale in front of the Scissors Paddlewheel

Bob Vitale in front of the Scissors Paddlewheel

About 14 years ago, after a consulting background working with manufacturers on fabrication and processes, Bob Vitale met a man named Robert Hubbs who began mentoring him in the science of making traditional waterwheels, for things like restoration of old grist mills. “There was an interest out there for people to have waterwheels – not just for decorative uses, but for potential energy,” says Bob.

Soon Vitale and his mentor started building them as a full time business operation, Robert with the engineering background, and Bob with the modern fabrication background. “He had the science,” says Bob, “and I had the knowhow. And fortunately he taught me the science before he passed away in 2001.”

Vitale kept the company going and eventually decided to take Hubbs’ old world science and bring it into the 21st century, by applying CAD and lasers and other more current fabrication techniques to it.

Over the past 10 years Bob’s company has made some big wheels – up to 36 foot in diameter – and has equipped the water moving needs for a quickly growing number of algae open ponds around the world. But there’s much more to the story, he said as he filled us in a bit more on Waterwheel Factory’s past, present and future.

Touchstone Research Lab showing the scissor wheel design

Touchstone Research Lab showing the scissor wheel design

What was your first project with algae raceway ponds?

I got a phone call from General Atomics, back in 2007, from one of their developers who was working on an algae program for the military. He said, “Looks like you guys know how to make a wheel.” And that was the phone call that got us into the algae business. That project was actually the one that initiated the activities for Texas A&M, in their Pecos algae operation. General Atomics were the lead engineers in developing the algae process for them. That got us into Texas A&M and things just started growing from there.

What kind of differences were you finding in the requests you started getting from algae growers, versus the types of applications you had before that?

They are two very different markets. In one sense, water was powering the wheel, and in this case we are powering the wheel to move water. It’s pretty much a 180-degree difference in the approach to things. It was quite a learning curve making that switchover.

What are some of the difficulties you’ve addressed in the designs of your paddlewheels and how have they improved the functionality of ponds?

Basically, there are no two algae sites the same, as no two waterwheels are the same. Everybody has their own formula, their own recipe. So every situation is a little different in terms of the speed they want to run the water, the depth they want, the salinity of the water, the physical environment as far as how they want to take care of their growth processes. Everyone’s got their own preferences of how they want to do something, so there really are no “generic” waterwheels. From our beginning, everything was customized exactly. And from that we began learning the physics of being able to properly design wheels more efficiently.

Testing a paddlewheel design in the lab

Testing a paddlewheel design in the lab

When we started, we basically used a big 2×4, and then we began learning from there. Every day got to be a learning experience for us, so we learned things like how big to make the blades, what type of motors to use. And then I began looking at the actual blade design, and the best techniques for moving water. This was a couple of years of research, sending a wheel out and looking at how it worked for a client, and asking how can we make it better the next time?

There was a point that we began learning that we needed to put a bend in the blades of our wheels, and another point where we realized we were losing a lot of energy by using the traditional paddlewheel designs from the 1800s, which then got us into the scissor wheel design. Once we began into that arena and saw how much power we were saving, and how efficient the wheel became, we began fine-tuning it. And we now know – to the watt – what our power requirements are. We now know how to match our gearboxes, variable frequency drives, motors, how to make everything run smoothly and, just as importantly, how to build better products at lower costs. But it didn’t happen overnight!

What advice do you have for algae cultivators building open systems? What have you learned that they should know when they are designing their ponds?

We start by asking the client what is their basic premise. There are a lot of questions to understand on the basic premise before it becomes clear what the wheel requirements will be. Are we talking above ground, or a ditch? How much flexibility? The length and width of it? How are they adding and controlling the CO2? Have they considered their water quality monitoring and control issues? What type of control system is being used? Is it a test pond, research facility, production facility… There is a long list of questions that need to be asked, and then we can come up with some ideas and approaches for them to think about.

We’re always happy to give advice on what we’ve learned in the past.

You mention control systems. How does that interface with the waterwheel operations?

Monitoring station at Texas A&M Research Center

Monitoring station at Texas A&M Research Center

Over the last two years we have expanded the operations and scope of what we provide. With these changes we began monitoring the motor activities of the paddle wheels. Then we started setting up and developing water quality monitoring. From there we got into remote monitoring and process control, which got us into a very deep level of analysis. We began to expand and became a full service solution provider. From that, we’ve developed a network of companies and groups who we’ve built relationships and alliances with, so now when our clients ask us questions beyond what we do, we can connect them with experts for their particular situations.

We have also entered into the chemistry, and the quality control, as well as integrating the latest technology and operations control systems happening today. So we are able to work with people just starting out in cultivation and give them the most recent advances. We are now an internationally oriented, full service algae company, rather than a company just making paddlewheels.

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2012 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
If we built a Green Friendship Bridge composed of 8,600 algae microfarms given to Mexican and Central American farmers in lieu of 1%, (13 miles) of additional border wall...
In New Zealand is an internationally significant collection of microalgae cultures known as the Cawthron Institute Culture Collection of Microalgae (CICCM). The CICCM was...
EPA (eicosapentaenoic acid) fortified eggs are developing quite a demand among middle and upper-class consumers in China. With clinical trials demonstrating that EPA can ...
Karen Phillips writes for deeperblue.com that algae are the alveoli in the ocean lungs of our planet, vitally important to the health of the seas as home, food source, sa...
Dan Wood, at the University of Connecticut, writes that assistant extension educator of marine aquaculture at UConn’s Avery Point Campus, Anoushka Concepcion, spoke about...
Matt Stultz writes in MakeZine.com about Algix’ unique 3-D printing filament created with a combination of algae and Polylactic Acid (PLA) – a biodegradable thermoplastic...
Marlene Cimons, nexusmedianews.com reports that researchers at the University of California San Diego and Sapphire Energy have successfully grown a genetically engineered...
Algatech has announced the opening of Algatech Inc., a New York City-based subsidiary created to serve the North American market. The company has appointed Ken Seguine to...
The U.S. Department of Energy (DOE) has announced the selection of three projects to receive up to $8 million, aimed at reducing the costs of producing algal biofuels and...
The recent announcement by the U.S. Department of Energy (DOE) of three projects to receive up to $8 million, aimed at reducing the costs of producing algal biofuels and ...
A Bay Area company has patented a group of three single-celled, algae-like organisms that, when grown together, can produce high quantities of sugar just right for making...
Ali Morris writes in dezeen.com that Dutch designers Eric Klarenbeek and Maartje Dros have developed a bioplastic made from algae, which they believe could completely rep...