Process

The  A.I.M. Interview: Fluid Imaging Technologies’ CEO Kent Peterson
November 27, 2011, by David Schwartz
AlgaeIndustryMagazine.com

kdropcapsent Peterson, founder and CEO of Fluid Imaging Technologies, Inc., has, for the past ten years, watched the algae industry develop through a microscope. His Yarmouth, Maine-based firm builds and markets the FlowCAM®, a portable, image-based analyzer of cells and particles in fluid medium, currently used at hundreds of locations in 35 countries around the world.

He sensed early on that understanding the dynamics of microalgae—at an up close and personal level—was going to be increasingly important. His determination, as well as the advice he has long promoted to those pursuing algal biofuel, echoed the words of Sir Winston Churchill: “Never, never, never give up.”

In pursuit of that objective, Kent was recently named Mainebiz Magazine leader of the year in the small business category. Fluid Imaging won the U.S. Small Business Administration’s New England Exporter of the year award, as well as the Maine International Trade Center’s Exporter of the Year for 2010.

We caught up with Kent recently via email while he was in Hong Kong after attending Algae World Asia, and asked about the path he took to becoming a key technology supplier in the developing algae production industry.

FlowCam desktop system

FlowCAM desktop system

How did Fluid Imaging get started?

Over ten years ago, I was involved in pioneering a novel water treatment technology utilizing cavitation as the mechanism to lyse microscopic cells. I was discussing the matter with a colleague about the need to study the process at the cellular level in real time. My colleague mentioned a breakthrough instrument that could do just that. An introduction was made to the inventor, Dr. Chris Sieracki, and I learned about what appeared to be a game-changing system, called FlowCAM, for real-time analysis at the microscopic level.

So Dr. Sieracki and I partnered up and began commercialization efforts. I was convinced that the fundamental core competency of digital imaging flow cytometry, as well as digital imaging particle analysis, was a technology that the market badly needed. The existing methods were slow and labor intensive, so relatively little data could be developed in a reasonable amount of time. That was when I decided to go all in, and facilitate the growth of this business.

FlowCam imagery

FlowCAM imagery

Which market were you looking at when you started the company?

The initial application of the FlowCAM was for oceanographic research for phytoplankton (algae) and zooplankton because of the novel combination of microscopy, imaging and flow cytometry. The specialty was toxic harmful algal bloom species (HABs). For over ten years, FlowCAMs have been deployed worldwide in laboratories and oceanographic research vessels providing timely and extensive biological information. That led to studying taste and odor causing algae for municipal water supplies.

And then with the growing interest in studying optimum algae species for lipid production, algae growing conditions and predator monitoring of raceways and photobioreactors, applying the FlowCAM to this market was a natural application extension.

Tell us a little about the evolution, or the process, of building the company.

Fluid Imaging Technologies was a case study in bootstrapping on the belief and vision that someday industry would appreciate the value of real-time digital imaging analysis. An active marketing campaign began which principally relied on showing the FlowCAM being run at trade shows and expos.

No brochure or phone conversation could elicit the “wow factor” experienced when a microscopist saw that, in seconds, the instrument could gather more data then he or she could in hours or weeks of manual labor—and without operator bias or fatigue.

When we received an order and a down payment, we would assemble the system and take it to a trade show, or show it to another potential customer, before shipping it to the first customer. The gains from one sale were put into additional marketing and sales efforts. We just kept proceeding to go in an upward spiral as word got out and industry started to accept this technology, all the while adding employees to leverage our efforts.

Volvox algae preserved in FlowCam database

Volvox algae preserved in FlowCAM database

Your company’s growth has paralleled the development of the modern algae industry. What are some of milestones you’ve observed as the industry has grown?

I am continuously amazed and excited about technological developments along the path to algae-to-biofuel commercialization. These developments have centered around better understandings of algae growth principles, cost improvements in construction materials and technological developments such as the use of LEDs and advanced extraction methods.

While the jury may still be out in terms of raceway vs. photobioreactor, or natural vs. genetically modified strains, I see opportunities to support the industry participants regardless of methods or means to the end. The FlowCAM is useful for algae analysis and process monitoring, irrespective of the approach taken, as it can image a PBR strain equally as well as a GM strain.

I am not a phycologist, but I am peaked by some new peer-reviewed research I saw that makes the observation that mixed cultures versus mono cultures may be a more stable approach to grow algae in large, sustainable environments. It points to some role of symbiosis that may not be fully understood.

Adaptation to local species and not trying to grow a species not indigenous to a geographic location is taking hold more and more.

If you extrapolate the future of the FlowCAM technology, what do you see down the road?

Never before has any technology offered high speed, real-time imaging of thousands of individual algal cells in seconds—in full color, automatically. That said, I believe it can be expected that more sensitive instrumentation, smaller and lower cost instruments, as well as in-line capabilities, will be seen in the coming years.

As you travel the world, what interesting trends or developments are you noticing in places that will eventually influence the algae activities in other areas?

The acceptance that there is no holy grail algal species, and that maximum lipid production may not be the ultimate objective. Adaptation to local species and not trying to grow a species not indigenous to a geographic location is taking hold more and more.

Local needs and conditions are playing a fundamental role in formulating algae-to-biofuel strategies, such as incorporating the need to treat wastewater becoming part of the agenda.

Also, economic reality is settling in more and more in regards to the development of high value products from algae, so that entities can survive in the long haul until further technological developments and advancements in knowledge pave the way to (hopefully) economic success in algae biofuels.

In point of fact, at the recent Algae World Asia conference held in Beijing, a rather small percentage of the talks focused strictly on algae-to-biofuel, and this bodes well for the long-term sustainability of algae-to-biofuel development.

Go to HOME Page

Copyright ©2010-2011 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

Visit the A.I.M. Archives

AIM interview ArchivesAlgae 101 ArchivesHot Products ArchivesInnovations ArchivesMoney ArchivesProcess ArchivesResearch ArchivesScale Up ArchivesThe Buzz Archives

FREE Algae News & Updates

Sign up to receive breaking A.I.M. updates! 

From The A.I.M. Archives

— Refresh Page for More Choices
University of Adelaide researchers are using nanotechnology and the fossils of diatoms to develop a novel chemical-free and resistance-free way of protecting stored grain...
One of 12 winners of the 2014 Lexus Design Award, the Ooho algae balloon was created by three London-based designers to contribute a solution to the rising number of plas...
Students from three Arizona universities will demonstrate their algae research projects at an Innovation Showcase May 1, in Arizona State University’s Sun Devil Fitness C...
“Proterro has reached its Q1 sugar-production pilot milestones,” CEO Kef Kasdin reported at the recent Advanced Biofuels Leadership Conference, in Washington, D.C. “In fo...
Santa Fe Community College has been awarded a $50,000, SEED Infrastructure Grant from the Experimental Program to Stimulate Competitive Research (EPSCoR), for commercial ...
Although the use of whole microalgae in animal diets has long been studied, the 
de-fatted biomass of microalgal species, derived from biofuel production research, has on...
By sending algae into space, a U.S. Department of Agriculture (USDA) scientist and his team will be able to study some of the key mechanisms that control plant growth and...
A new, outdoor system at the University of Dayton Research Institute has been producing a high volume of algae since its installation in the summer of 2013, even through ...
A University of New South Wales (UNSW)-led team of researchers has discovered how algae that survive in very low levels of light are able to switch on and off a weird qua...
Algae Industry Magazine is pleased to announce a new Algae 101 series by our popular blogger, Mark Edwards, Professor, Arizona State University. The Algae Solutions to Na...
A recent discovery in the multicellular green alga, Volvox carteri,has revealed the origin of male and female sexes, showing how they evolved from a more primitive mating...
Phys.Org reports that scientists Jolanda Verspagen and Jef Huisman of the University of Amsterdam, The Netherlands have concluded that rising CO2 concentrations in the at...
Bookending the upcoming Algae Biomass Summit, Sept. 29-Oct.2 in San Diego, will be industry tours to give attendees a first-hand look at the latest progress in technical ...
Expanding from its initial work in algal biofuels, General Atomic’s (GA’s) Advanced Biological Processes team has focused on the rising need for food globally, specifical...
SCHOTT AG, of Mitterteich, Germany, and Algatechnologies Ltd. (Algatech), based at Israel’s Kibbutz Ketura, have signed an R&D agreement to strengthen their partnersh...
U.S. farmers and biofuels makers are watching for the Environmental Protection Agency’s (EPA’s) final decision on the 2014 Renewable Fuel Standard rules, which will set t...
James “Jamie” Levine took over the reigns at Sapphire Energy in July of this year as former President and CEO Cynthia “CJ” Warner stepped down, retaining her role as chai...
With their new CO₂ processing-platform called AstaCos, AlgaeBiotech can produce waxy particles of only 50-100 µm in size with a loading of 25% astaxanthin oleoresin. The ...