Click here for more information about Algenuity
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Research

Advancing from lab to industrial algae production

March 22, 2015
AlgaeIndustryMagazine.com

Prof. Bafna and his research team monitored the prokaryotic and eukaryotic composition of an algae pond in San Diego over the course of a year.

Prof. Bafna and his research team monitored the prokaryotic and eukaryotic composition of an algae pond in San Diego over the course of a year.

Computer Science and Engineering Professor at the University of California San Diego (UCSD) Vineet Bafna was on the roster of experts who spoke at Green Revolution 2.0. The symposium, March 12-13 in the Qualcomm Institute, was organized by the California Center for Algal Biology and the Center for Food and Fuel for the 21st Century (FF21). Bioinformatics expert Bafna addressed “Ecology of Open Algae Ponds for the Production of Biofuels,” noting that algae are great feedstocks for biofuels and other products, but the challenge is to get yield at low cost.

Green Revolution 2.0 refers to the observation that the first green revolution, beginning in the 1940s, focused agricultural scientists on saving more than a billion people worldwide from starvation by developing high yielding varieties of crops, synthetic fertilizers and pesticides, improved irrigation practices and better land management. Now scientists are confronted with how to feed and provide fuel for countries such as India, Brazil, Mexico and China, which are not only projected to dramatically expand their populations in the decades ahead, but have rapidly developing economies that will require an exponential increase in fuel and food. What the world needs to satisfy those demands, say many scientists, is a second Green Revolution.

UCSD Computer Science and Engineering professor Vineet Bafna

UCSD Computer Science and Engineering professor Vineet Bafna

In principle, microalgae may produce between 10 and 100 times more oil per acre than traditional crops, but that has not been achieved in an industrial setting. “There is a general understanding in ecology that diversity is good for productivity, and that precept might be useful for industrial production,” said Bafna. “But we don’t know that these ecological ideas can work in an industrial setting.”

To test his hypothesis, Bafna’s team did a year-long experiment in which they monitored the prokaryotic and eukaryotic composition of an algae pond using genome sequencing to assess the taxonomic composition and diversity in the pond. In addition to genomic sampling, they used phenotyping to gauge various measures of pond health.

“We managed to optimize productivity of biomass over the course of a year,” says Bafna. “Our results strongly suggest that diversity is important for pond productivity, and even in a managed setting, open ponds behave like natural ecosystems.”

The team’s results, as Bafna explained to the FF21 annual conference, indicate that algal diversity promotes production, and that understanding the ecology of open algae ponds for the production of biofuels is critical to managing their output of biomass energy and other products. The findings hold out hope that microalgae could one day fulfill its theoretical range of producing from 10 to 100 times more oil per acre than traditional crops.

The study was funded by NSF and carried out in a partnership with FF21 director Stephen Mayfield and Biological Sciences professor Jonathan Shurin (both from UC San Diego). Bafna also acknowledged collaborators at Sapphire Energy, Life Technologies and SDSU.

More Like This…

HOME A.I.M. Archives

Copyright ©2010-2015 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Scientists at Dartmouth College, in Hanover, New Hampshire, have discovered that marine microalgae can completely replace the wild fish oil currently used to feed tilapia...
CBS Miami reports that protesters are demanding answers and action over the toxic mess in Florida — a poisonous algae bloom plaguing four counties now under a state of em...
The water sample taken from the St. Lucie River near the coastline of Ft. Pierce, Florida was loaded with blue-green algae when it arrived in Ben Spaulding’s lab in Scarb...
Dr. Tom Dempster works as a research professor – focusing on strain selection and development, biomass production, algal biofuels and high-value products, and air and was...
Since hydrogen fuel cells produce electricity, we are increasingly thinking about hydrogen as a successor to crude oil. But where will the hydrogen come from? Its ecologi...
Tom Lindfors writes in the New Richmond News about how the Roberts, Wisconsin, wastewater treatment plant – considered a minor utility designed to treat an average flow o...
A Quebec-based company that specializes in the manufacturing and commercialization of marine and seaweed-based products for agriculture and horticulture constructed a new...
Matt Stultz writes in MakeZine.com about Algix’ unique 3-D printing filament created with a combination of algae and Polylactic Acid (PLA) – a biodegradable thermoplastic...
Almost two years ago, on June 28, 2015, the rocket carrying experiments from Chatfield High School to the International Space Station disintegrated 139 seconds into its f...
Qualitas Health, an algae-based health and nutrition company headquartered in Texas, has announced a long term, strategic partnership with commercial crop producer Green ...
Memory Maninga reports for Zambia Daily Mail that in Mansa, the capital of the Luapula Province of Zambia, spirulina is being grown in ponds in the communities because of...
The Department of Energy has just announced $22 million in funding through the Advanced Research Projects Agency-Energy (ARPA-E) for 18 innovative projects as part of the...