[ad#PhycoBiosciences AIM Interview]

Research

Abu Dhabi scientists developing high salinity algal strain

August 18, 2013
AlgaeIndustryMagazine.com

Ahmed Al Harethi, a second year master's student with Masdar Institute's Chemical Engineering program, is cultivating algae strains found in water pools in Al Wathbah, Abu Dhabi, for his biofuel research. Courtesy Masdar Institute

Ahmed Al Harethi, a second year master’s student with Masdar Institute’s Chemical Engineering program, is cultivating algae strains found in water pools in Al Wathbah, Abu Dhabi, for his biofuel research. Courtesy Masdar Institute

Matt Kwong reports for The National that researchers from Abu Dhabi have been roaming the open desert with geospatial mapping software, looking for blooms of AAH001, a particularly hardy strain of algae native to Abu Dhabi, that could eventually usher in another energy boom for the UAE.

Dr. Hector Hernandez, the assistant professor at the Masdar Institute who is leading the research, first located AAH001 two years ago in the desert near Al Wathba. He believes it could solve a big obstacle in the effort to use single-celled, photosynthetic organisms to make a renewable, alternative fuel.

“Most of the algae used for biofuels we’ve heard about to date use fresh water, and there’s huge evaporation,” said Dr. Hernandez. “In the last two years, people have realized that’s not sustainable. They’ve been looking for algae that live at high salinities. We found it in Abu Dhabi, and we realized we had something special. This thing is a rock star.”

Unlike most algal strains, AAH001 survives remarkably well in a wide range of temperatures and has a long harvesting season. “I can grow this from 20°C all the way up to 40°C without worrying about evaporation or the salinity,” Dr. Hernandez said. “It seems to live very well, not just survive, in all these different conditions.”

Dr. Hernandez said he was pleasantly surprised in February 2011 to discover AAH001 in the desert, growing near ultra-high salinity watering holes in the sabkha (salt flats). Ponds in the area have salinities that are up to six times higher than the ocean.

In a basement lab at the Masdar Institute, Dr. Hernandez and his team have been able to grow the algae at more than 300 parts per thousand salt – roughly nine times the regular salinity of the ocean. The strain is considerably lower maintenance, and does not require the same specialized feed, strict temperatures or salinity controls as other algae. “It seems to be the only strain to date that has all the qualities we’re looking for,” said Dr. Hernandez.

With so much uninhabitable desert available in Abu Dhabi, processing plants could be built inland and around large salt flats rather than by the sea, where they would harm ecologically sensitive marine life.

The commercial possibilities were discussed in February at the inaugural Algae World MENA 2013 Conference, Seminar and Summit in Dubai. “We’ve been approached by very large corporations internationally who want to take this to the next step as soon as possible,” Dr. Hernandez said. “We have the land, we have the space available, and we’re just looking for somebody who has the expertise and technology to scale up from pond size.”

Read More

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Scientists at Dartmouth College, in Hanover, New Hampshire, have discovered that marine microalgae can completely replace the wild fish oil currently used to feed tilapia...
The water sample taken from the St. Lucie River near the coastline of Ft. Pierce, Florida was loaded with blue-green algae when it arrived in Ben Spaulding’s lab in Scarb...
In Australia, the New South Wales Deep Green Biotech Hub (DGBH) has been launched as an enabling incubator environment to foster the development of algae as a cost effect...
Tafline Laylin writes for Inhabitat.com about the elegant solution that Romanian designer Alexandru Predonu has conceived that uses solar energy to power a rotating desal...
Karen Phillips writes for deeperblue.com that algae are the alveoli in the ocean lungs of our planet, vitally important to the health of the seas as home, food source, sa...
Cellana, Inc., a leading developer of algae-based products for sustainable nutrition and energy applications, and PIVEG, Inc., a leader in high-specification ingredients ...
Portuguese microalgae producer, Allmicroalgae Natural Products S.A., has moved to the next stage in development of new production technologies to grow Nannochloropsis oce...
For algal biofuels to compete with petroleum, farming algae has to become less expensive. Toward that goal, Sandia National Laboratories is testing strains of algae for r...
Marlene Cimons, nexusmedianews.com reports that researchers at the University of California San Diego and Sapphire Energy have successfully grown a genetically engineered...
WesTech Engineering, Inc. and Utah State University’s Sustainable Waste-to-Bioproducts Engineering Center (SWBEC) are jointly engaged in developing processes for more eff...
Will Yeates reports in DailyPlanet.com that an urban “algae farm” producing low-carbon protein and bio-fuel is one of the highlights on show this week at the future energ...
The United States Department of Energy (DOE) announced that the University of New England was awarded a three-year, nationally competitive research grant for $1,321,039 f...