Click here for more information about Algenuity
Click here for more information about LiqofluxPhenometrics Buy 3 Get 1 Free
Visit cricatalyst.com!Evodos Separation Technology

Research

A new type of photosynthesis is discovered

June 20, 2018
AlgaeIndustryMagazine.com

Colony of Chroococcidiopsis-like cells where the different colors represent photosynthesis driven by chlorophyll-a (magenta) and chlorophyll-f (yellow). Credit: Dennis Nuernberg

Hayley Dunning writes from the Imperial College of London that a new discovery has changed our understanding of the basic mechanism of photosynthesis and should rewrite the textbooks. It will also tailor the way we hunt for alien life and provide insights into how we could engineer more efficient crops that take advantage of longer wavelengths of light.

The vast majority of life on Earth uses visible red light in the process of photosynthesis, but the new type, published in the current Science, uses near-infrared light instead. It was detected in a wide range of cyanobacteria (blue-green algae) when they grow in near-infrared light, found in shaded conditions like bacterial mats in Yellowstone and in beach rock in Australia.

The standard, near-universal type of photosynthesis uses the green pigment, chlorophyll-a, both to collect light and use its energy to make useful biochemicals and oxygen. The way chlorophyll-a absorbs light means only the energy from red light can be used for photosynthesis.

Since chlorophyll-a is present in all plants, algae and cyanobacteria that we know of, it was considered that the energy of red light set the “red limit” for photosynthesis; that is, the minimum amount of energy needed to do the demanding chemistry that produces oxygen. The red limit is used in astrobiology to judge whether complex life could have evolved on planets in other solar systems.

However, when some cyanobacteria are grown under near-infrared light, the standard chlorophyll-a-containing systems shut down and different systems containing a different kind of chlorophyll, chlorophyll-f, take over.

Cross-section of beach rock (Heron Island, Australia) showing chlorophyll-f containing cyanobacteria (green band) growing deep into the rock, several millimeters below the surface. Credit: Dennis Nuernberg

Until now, it was thought that chlorophyll-f just harvested the light. The new research shows that, instead, chlorophyll-f plays the key role in photosynthesis under shaded conditions, using lower-energy infrared light to do the complex chemistry. This is photosynthesis “beyond the red limit.”

Lead researcher Professor Bill Rutherford, from the Department of Life Sciences at Imperial, said, “The new form of photosynthesis made us rethink what we thought was possible. It also changes how we understand the key events at the heart of standard photosynthesis. This is textbook changing stuff.”

Another cyanobacterium, Acaryochloris, is already known to do photosynthesis beyond the red limit. However, because it occurs in just this one species, with a very specific habitat, it had been considered a “one-off.” Acaryochloris lives underneath a green sea-squirt that shades out most of the visible light leaving just the near-infrared.

The chlorophyll-f-based photosynthesis just reported represents a third type of photosynthesis that is widespread. However, it is only used in special infrared-rich shaded conditions; in normal light conditions, the standard red form of photosynthesis is used.

It was thought that light damage would be more severe beyond the red limit, but the new study shows that it is not a problem in stable, shaded environments.

“Finding a type of photosynthesis that works beyond the red limit changes our understanding of the energy requirements of photosynthesis,” said co-author Dr. Andrea Fantuzzi, from the Department of Life Sciences at Imperial. “This provides insights into light energy use and into mechanisms that protect the systems against damage by light.”

These insights could be useful for researchers trying to engineer crops to perform more efficient photosynthesis by using a wider range of light. How these cyanobacteria protect themselves from damage caused by variations in the brightness of light could help researchers discover what is feasible to engineer into crop plants.

The discovery was initiated by Dr. Dennis Nürnberg at Imperial College London, and supported by the BBSRC, and involved groups from the ANU in Canberra, the CNRS in Paris and Saclay and the CNR in Milan.

Read More

More Like This…

Copyright ©2010-2019 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives

From The A.I.M. Archives

— Refresh Page for More Choices
London-based architectural and urban design firm ecoLogicStudio www.ecologicstudio.com, led by Claudia Pasquero and Marco Poletto, has unveiled Photo.Synth.Etica, a large...
Julianna Photopoulos writes in Horizon EU Research and Innovation magazine that UK start-up Skipping Rocks Lab aims to use natural materials extracted from plants and sea...
E.A. Crunden writes in thinkprogress.org that Florida’s first gubernatorial debate was dominated by environmental and climate issues, with an emphasis on the state’s alga...
Jessica D'Lima writes in AdvancedScienceNews.com that medicine is moving towards minimally invasive procedures, which have important patient-oriented benefits such as sho...
Cécile Barbière writes for Euractive.fr (translated by Rob Kirby) that, in large greenhouses formerly home to the tomatoes and cucumbers of the market gardening Groupe Ol...
French researchers have been exploring the potential of algae for boosting the immune systems of animals and reducing the use of antibiotics in livestock farming. Past st...
Cyanotech Corporation, a Kailua Kona, Hawaii-based leader in high-value nutrition and health products made from algae, has announced financial results for the first quart...
The Swiss Algae Consortium Association (SWALG) was founded in May 2018 as a non-profit organization that serves as a platform for algae-related activities in Switzerland ...
Nature.com reports that swimming algae have been enlisted to carry drugs to individual cells, raising the prospect that such “microswimmers” could deliver targeted therap...
Environmental Technology magazine notes that the difficulty in predicting how algae blooms will develop lies in their variform nature. With a multitude of different bloom...
42 Technology has been appointed by LabXero, acoustic particle filtration technology company, to help develop pilot-scale biomanufacturing equipment that could significan...
Susan Kraemer writes in solarpaces.org that to use solar thermal energy to convert farmed algae to fuel, the solar fuels research team at Australian National University (...