Research

A breakthrough in artificial photosynthesis

June 24, 2013
AlgaeIndustryMagazine.com

An artificial light-collecting antenna system. Binding a large number of light-absorbing molecules ("red balls") to a DNA molecule, which is then modified with a porphyrin unit (blue) will result in the creation of a self-assembling system that resembles light harvesting in natural photosynthesis.

An artificial light-collecting antenna system. Binding a large number of light-absorbing molecules (“red balls”) to a DNA molecule, which is then modified with a porphyrin unit (blue) will result in the creation of a self-assembling system that resembles light harvesting in natural photosynthesis.

Aresearch team at Chalmers University of Technology, in Gothenburg,
 Sweden, has made a nanotechnological breakthrough in the first step required for artificial photosynthesis. The team has demonstrated that it is possible to use self-assembling DNA molecules as scaffolding to create artificial systems that collect light. The results were recently published in the esteemed scientific Journal of the American Chemical Society.

Scaffolding in plants and algae consists of a large number of proteins that organize chlorophyll molecules to ensure effective light collection. The system is complicated and would basically be impossible to construct artificially. “It’s all over if a bond breaks,” said Jonas Hannestad, PhD of physical chemistry at Chalmers. “If DNA is used instead to organize the light-collecting molecules, the same precision is not achieved but a dynamic self-constructing system arises.”

With a system that builds itself, the researchers have begun to approach nature’s method. If any of the light-collecting molecules break, it will be replaced with another one a second later. In this sense, it is a self-repairing system as opposed to if molecules had been put there by researchers with synthetic organic chemistry.

The sun’s light is moved to a reaction center in plants and algae so they can synthesize sugars and other energy-rich molecules. “We can move energy to a reaction center, but we have not resolved how the reactions themselves are to take place there,” said Bo Albinsson, professor of physical chemistry and head of the research team. “This is actually the most difficult part of artificial photosynthesis. We have demonstrated that an antenna can easily be built. We have recreated that part of the miracle.”

The Chalmers researchers are combining artificial photosynthesis with DNA nanotechnology. When constructing nano-objects that are billionths of a meter, DNA molecules have proven to function very well as building material. This is because DNA strands have the ability to attach to each other in a predictable manner. As long as the correct assembly instructions are given from the start, DNA strands in a test tube can bend around each other and basically form any structure.

“It’s like a puzzle where the pieces only fit together in one specific way,” said Albinsson. “That is why it is possible to draw a fairly complex structure on paper and then know basically what it will look like. We subsequently use those traits to control how light collection will take place.”

The research was funded by the Swedish Research Council. The research team recently received a new grant amounting to SEK 9 million ($1.33 million USD) from the Swedish Energy Agency.

Read More

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Oregon State University researchers are combining diatoms, a type of single-celled photosynthetic algae, with nanoparticles to create a sensor capable of detecting minisc...
Chase Ezell writes in Earth911.com about the irony of Algenol’s biggest friction source on the way to marketing their carbon reducing algal-based ethanol being — the EPA ...
Researchers at the Paul Scherer Institute (PSI) in Wädenswil, Switzerland, have succeeded in producing energy-rich gas from microalgae, and in doing so have demonstrated ...
Arizona is taking advantage of its open land and ample sunshine to assume a leadership position in the algae biofuel field. The state is home to two national algae testbe...
Renewable fuels company Muradel has launched Australia’s first integrated demonstration plant to sustainably convert algae into green crude, as a first step towards a com...
In October 2014 an unusual AlgaePARC research paper entitled Design and construction of the microalgal pilot facility AlgaePARC was published in the Journal of Algal Rese...
Most Americans get plenty of protein, primarily from animal products including meat, eggs and milk. But for many, ensuring a healthy protein intake can be challenging. In...
Western Morning News reports that Westcountry scientists in the U.K. are using algae to develop an innovative new method of cleaning up contaminated mine water while harv...
Much of the development of the algae industry in 2014 was driven by domestic and international alliances, partnerships, and mergers that brought complementary skills and ...
In an age where customer input is as easy as a click, OriginOil has tapped directly into its intended market to R&D their next generation algae harvester -- with a de...
Researchers Greg O’Neil of Western Washington University and Chris Reddy of Woods Hole Oceanographic Institution (WHOI), have exploited an unusual and untapped class of c...
Caroline Scott-Thomas reports on Food Navigator about an online algae discussion on the social media site Reddit where Mars' chief agricultural officer Howard-Yana Shapir...
Nutritionaloutlook.com this month gives a well-rounded survey of how algae’s uses in food, beverage, and supplements keep expanding. Here is an excerpt: Thanks to the 201...
A U.S. Department of Energy (DOE) Biomass Energy Technologies Office (BETO) project, awarded to Cal Poly (California Polytechnic State University) in collaboration with M...
Using a malaria parasite protein produced from algae, paired with an immune-boosting cocktail suitable for use in humans, researchers at UC San Diego School of Medicine g...