Research

A breakthrough in artificial photosynthesis

June 24, 2013
AlgaeIndustryMagazine.com

An artificial light-collecting antenna system. Binding a large number of light-absorbing molecules (

An artificial light-collecting antenna system. Binding a large number of light-absorbing molecules (“red balls”) to a DNA molecule, which is then modified with a porphyrin unit (blue) will result in the creation of a self-assembling system that resembles light harvesting in natural photosynthesis.

Aresearch team at Chalmers University of Technology, in Gothenburg,
 Sweden, has made a nanotechnological breakthrough in the first step required for artificial photosynthesis. The team has demonstrated that it is possible to use self-assembling DNA molecules as scaffolding to create artificial systems that collect light. The results were recently published in the esteemed scientific Journal of the American Chemical Society.

Scaffolding in plants and algae consists of a large number of proteins that organize chlorophyll molecules to ensure effective light collection. The system is complicated and would basically be impossible to construct artificially. “It’s all over if a bond breaks,” said Jonas Hannestad, PhD of physical chemistry at Chalmers. “If DNA is used instead to organize the light-collecting molecules, the same precision is not achieved but a dynamic self-constructing system arises.”

With a system that builds itself, the researchers have begun to approach nature’s method. If any of the light-collecting molecules break, it will be replaced with another one a second later. In this sense, it is a self-repairing system as opposed to if molecules had been put there by researchers with synthetic organic chemistry.

The sun’s light is moved to a reaction center in plants and algae so they can synthesize sugars and other energy-rich molecules. “We can move energy to a reaction center, but we have not resolved how the reactions themselves are to take place there,” said Bo Albinsson, professor of physical chemistry and head of the research team. “This is actually the most difficult part of artificial photosynthesis. We have demonstrated that an antenna can easily be built. We have recreated that part of the miracle.”

The Chalmers researchers are combining artificial photosynthesis with DNA nanotechnology. When constructing nano-objects that are billionths of a meter, DNA molecules have proven to function very well as building material. This is because DNA strands have the ability to attach to each other in a predictable manner. As long as the correct assembly instructions are given from the start, DNA strands in a test tube can bend around each other and basically form any structure.

“It’s like a puzzle where the pieces only fit together in one specific way,” said Albinsson. “That is why it is possible to draw a fairly complex structure on paper and then know basically what it will look like. We subsequently use those traits to control how light collection will take place.”

The research was funded by the Swedish Research Council. The research team recently received a new grant amounting to SEK 9 million ($1.33 million USD) from the Swedish Energy Agency.

Read More

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Cellana, Inc., with operations in San Diego and Kailua-Kona, Hawaii, has announced that David Anton, Ph.D., has been appointed Chief Operating Officer and elected to the ...
Montague, Prince Edward Island-based Solarvest has announced that it has used its algal-based production platform to express bioactive therapeutic proteins. The proof of ...
As one of the most water-poor countries in the world, Jordan’s current water resources are significantly below the global water scarcity line. Annual rainfall falls under...
Simris Alg, a pioneering agribusiness producing omega-3 from farmed algae, has been declared one of Sweden’s 33 hottest companies in new technology. The renowned list is ...
UC San Diego’s efforts to produce innovative and sustainable solutions to the world’s environmental problems have resulted in a partnership with the region’s surfing indu...
Algae.Tec has announced a collaboration agreement for the commercialization of its algae production technology with Larimar Energy SRL, of the Dominican Republic. The ene...
Murdoch University researchers are investigating whether the effluent from piggeries can be effectively treated with micro- and macroalgae so that species of the organism...
Scientific representatives from the EnAlgae consortium are announcing preliminary results this week from a key algal carbon capture project in the works at Britain’s larg...
The vision of developing a community college degree program to train a high technology algae workforce was launched at New Mexico's Santa Fe Community College (SFCC) in 2...
John O’Renick, in this insightful piece from the Portland (Oregon) Tribune, writes about the problems we create from treating waste streams as garbage to be disposed of i...
Japan’s IHI Corporation has announced that they have succeeded in stably cultivating a modified high-output algal strain in a 1,500 square meter open pond in Kagoshima, K...
OriginClear Inc. and partner AlgEternal have announced that, based on AlgEternal’s field tests, they believe their pure algae concentrate, harvested with OriginClear tech...
Studies conducted by EnAlgae partners in Ireland, France and Belgium point the way to seaweed being a viable and sustainable feedstock for the future in North West Europe...
Biocrude oil obtained from hydrothermal liquefaction (HTL) of algae can be an energy-efficient replacement for the fossil crude oil normally used in the production of fue...
You know algae are a great food source for you. But what are the best ways to eat it? Jami Foss writes in shape.com about 10 ways to eat algae that are common, healthy an...