[ad#PhycoBiosciences AIM Interview]

Research

A breakthrough in artificial photosynthesis

June 24, 2013
AlgaeIndustryMagazine.com

An artificial light-collecting antenna system. Binding a large number of light-absorbing molecules ("red balls") to a DNA molecule, which is then modified with a porphyrin unit (blue) will result in the creation of a self-assembling system that resembles light harvesting in natural photosynthesis.

An artificial light-collecting antenna system. Binding a large number of light-absorbing molecules (“red balls”) to a DNA molecule, which is then modified with a porphyrin unit (blue) will result in the creation of a self-assembling system that resembles light harvesting in natural photosynthesis.

Aresearch team at Chalmers University of Technology, in Gothenburg,
 Sweden, has made a nanotechnological breakthrough in the first step required for artificial photosynthesis. The team has demonstrated that it is possible to use self-assembling DNA molecules as scaffolding to create artificial systems that collect light. The results were recently published in the esteemed scientific Journal of the American Chemical Society.

Scaffolding in plants and algae consists of a large number of proteins that organize chlorophyll molecules to ensure effective light collection. The system is complicated and would basically be impossible to construct artificially. “It’s all over if a bond breaks,” said Jonas Hannestad, PhD of physical chemistry at Chalmers. “If DNA is used instead to organize the light-collecting molecules, the same precision is not achieved but a dynamic self-constructing system arises.”

With a system that builds itself, the researchers have begun to approach nature’s method. If any of the light-collecting molecules break, it will be replaced with another one a second later. In this sense, it is a self-repairing system as opposed to if molecules had been put there by researchers with synthetic organic chemistry.

The sun’s light is moved to a reaction center in plants and algae so they can synthesize sugars and other energy-rich molecules. “We can move energy to a reaction center, but we have not resolved how the reactions themselves are to take place there,” said Bo Albinsson, professor of physical chemistry and head of the research team. “This is actually the most difficult part of artificial photosynthesis. We have demonstrated that an antenna can easily be built. We have recreated that part of the miracle.”

The Chalmers researchers are combining artificial photosynthesis with DNA nanotechnology. When constructing nano-objects that are billionths of a meter, DNA molecules have proven to function very well as building material. This is because DNA strands have the ability to attach to each other in a predictable manner. As long as the correct assembly instructions are given from the start, DNA strands in a test tube can bend around each other and basically form any structure.

“It’s like a puzzle where the pieces only fit together in one specific way,” said Albinsson. “That is why it is possible to draw a fairly complex structure on paper and then know basically what it will look like. We subsequently use those traits to control how light collection will take place.”

The research was funded by the Swedish Research Council. The research team recently received a new grant amounting to SEK 9 million ($1.33 million USD) from the Swedish Energy Agency.

Read More

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
If we built a Green Friendship Bridge composed of 8,600 algae microfarms given to Mexican and Central American farmers in lieu of 1%, (13 miles) of additional border wall...
Bioenergy-news.com reports that Volkswagen showcased its algae biogas-powered vehicle at a biogas project based in El Torno Chiclana, a town in south-west Spain. The test...
Natural Icelandic astaxanthin supplier, ArcticFarma, has reached an agreement with a subsidiary of China-based BGG to rename itself in order to avoid market confusion. “B...
Benedict O’Donnell writes in the EU Research and Innovation magazine, Horizon, about research being developed on seaweed as a biological, environmentally friendly, sustai...
In Australia, the New South Wales Deep Green Biotech Hub (DGBH) has been launched as an enabling incubator environment to foster the development of algae as a cost effect...
Cheryl Katz writes in National Geographic that Iceland’s last living lake balls are disappearing. The fluffy green supersize diatoms as large as a head of cabbage are one...
For plants and algae that carry on photosynthesis, light can be too much of a good thing. On a bright, sunny day, a plant might only be able to utilize 20 percent or less...
Agcore Technologies LLC, producer of Agcore Spirulina, has announced that their 2016 expansion project to support their growing aquafeed demand is in the completion proce...
Haley Gray reports for 5280.com that Upslope Brewing Company, in Boulder, Colorado, is one step closer to its goal of becoming a zero-waste brewery. The craft beer maker ...
Algae Health Sciences, Inc., a subsidiary of BGG, has announced that it has submitted a New Dietary Ingredient (NDI) to the US FDA for its flagship product AstaZine® Natu...
Forbes is running an interview with Bren Smith, an Ashoka Fellow and the founder of GreenWave, an organization dedicated to restoring oceans, mitigating climate change an...
Almost two years ago, on June 28, 2015, the rocket carrying experiments from Chatfield High School to the International Space Station disintegrated 139 seconds into its f...