[ad#PhycoBiosciences AIM Interview]

Research

A breakthrough in artificial photosynthesis

June 24, 2013
AlgaeIndustryMagazine.com

An artificial light-collecting antenna system. Binding a large number of light-absorbing molecules ("red balls") to a DNA molecule, which is then modified with a porphyrin unit (blue) will result in the creation of a self-assembling system that resembles light harvesting in natural photosynthesis.

An artificial light-collecting antenna system. Binding a large number of light-absorbing molecules (“red balls”) to a DNA molecule, which is then modified with a porphyrin unit (blue) will result in the creation of a self-assembling system that resembles light harvesting in natural photosynthesis.

Aresearch team at Chalmers University of Technology, in Gothenburg,
 Sweden, has made a nanotechnological breakthrough in the first step required for artificial photosynthesis. The team has demonstrated that it is possible to use self-assembling DNA molecules as scaffolding to create artificial systems that collect light. The results were recently published in the esteemed scientific Journal of the American Chemical Society.

Scaffolding in plants and algae consists of a large number of proteins that organize chlorophyll molecules to ensure effective light collection. The system is complicated and would basically be impossible to construct artificially. “It’s all over if a bond breaks,” said Jonas Hannestad, PhD of physical chemistry at Chalmers. “If DNA is used instead to organize the light-collecting molecules, the same precision is not achieved but a dynamic self-constructing system arises.”

With a system that builds itself, the researchers have begun to approach nature’s method. If any of the light-collecting molecules break, it will be replaced with another one a second later. In this sense, it is a self-repairing system as opposed to if molecules had been put there by researchers with synthetic organic chemistry.

The sun’s light is moved to a reaction center in plants and algae so they can synthesize sugars and other energy-rich molecules. “We can move energy to a reaction center, but we have not resolved how the reactions themselves are to take place there,” said Bo Albinsson, professor of physical chemistry and head of the research team. “This is actually the most difficult part of artificial photosynthesis. We have demonstrated that an antenna can easily be built. We have recreated that part of the miracle.”

The Chalmers researchers are combining artificial photosynthesis with DNA nanotechnology. When constructing nano-objects that are billionths of a meter, DNA molecules have proven to function very well as building material. This is because DNA strands have the ability to attach to each other in a predictable manner. As long as the correct assembly instructions are given from the start, DNA strands in a test tube can bend around each other and basically form any structure.

“It’s like a puzzle where the pieces only fit together in one specific way,” said Albinsson. “That is why it is possible to draw a fairly complex structure on paper and then know basically what it will look like. We subsequently use those traits to control how light collection will take place.”

The research was funded by the Swedish Research Council. The research team recently received a new grant amounting to SEK 9 million ($1.33 million USD) from the Swedish Energy Agency.

Read More

More Like This…

HOME Algae Industry Jobs

Copyright ©2010-2013 AlgaeIndustryMagazine.com. All rights reserved. Permission granted to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

From The A.I.M. Archives

— Refresh Page for More Choices
Algix, parent company of Solaplast, will be inaugurating their algae-to-plastic facility in Meridian, Mississippi, on November 14, 2014. Solaplast's facility will be focu...
As one of the most water-poor countries in the world, Jordan’s current water resources are significantly below the global water scarcity line. Annual rainfall falls under...
UC San Diego’s efforts to produce innovative and sustainable solutions to the world’s environmental problems have resulted in a partnership with the region’s surfing indu...
Tubular glass photobioreactor (PBR) systems protect algae from harmful environmental factors, keeping strains safer from bio-contamination. The glass tubing itself can be...
Algae “red tide” events often create dazzling nighttime light shows of blue-green bioluminescence resulting from the force generated by breaking waves. While many mysteri...
Scientists have been investigating the likely future impact of changing environmental conditions on ocean phytoplankton, which forms the basis of all the oceans' food cha...
Melissae Fellet reports in Chemical & Engineering News that new materials containing ultraviolet-absorbing molecules found in algae and reef-fish mucus could serve as...
Mark Harris writes in the Guardian about a pilot project in Las Cruces, New Mexico, where Dr. Peter Lammers, a professor in algal bioenergy at Arizona State University, a...
Sarah Zhang writes in Wired Magazine that the single-cell green algae Chlamydomonas reinhardtii have an eyespot that makes use of light-sensitive proteins. One of them is...
Researchers at Michigan State University have built a molecular super protein tool that streamlines the molecular machinery of cyanobacteria making, they say, biofuels an...
Students of algal research, including it's various applications and business models, have increasing opportunities to get quickly up to speed in many aspects of the rapid...
The U.S. Department of Energy’s just released 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy summarizes the most recent estimates of pote...