twittertopbarlinks_eventstopbarlinks_requesttopbarlinks_archives
Click here for more information about Liqofluxphenometrics515R1
Visit cricatalyst.com!Evodos Separation Technology

Research

1.6 Billion-year-old red algae fossils discovered

March 14, 2017
AlgaeIndustryMagazine.com

X-ray tomographic picture (false colors) of fossil thread-like red algae. Credit: Stefan Bengtson Click photo to enlarge

Scientists at the Swedish Museum of Natural History have found fossils of 1.6 billion-year-old probable red algae. The spectacular finds, publishing on March 14, 2017, in the open access journal PLOS Biology, indicate that advanced multicellular life evolved much earlier than previously thought.

The scientists found two kinds of fossils resembling red algae in uniquely well-preserved sedimentary rocks at Chitrakoot in central India. One type is thread-like, the other one consists of fleshy colonies. The scientists were able to see distinct inner cell structures and so-called cell fountains, the bundles of packed and splaying filaments that form the body of the fleshy forms and are characteristic of red algae.

“You cannot be a hundred per cent sure about material this ancient, as there is no DNA remaining, but the characters agree quite well with the morphology and structure of red algae,” says Stefan Bengtson, Professor emeritus of palaeozoology at the Swedish Museum of Natural History.

The earliest traces of life on Earth are at least 3.5 billion years old. These single-celled organisms, unlike eukaryotes, lack nuclei and other organelles. Large multicellular eukaryotic organisms became common much later, about 600 million years ago, near the transition to the Phanerozoic Era, the “time of visible life.”

Discoveries of early multicellular eukaryotes have been sporadic and difficult to interpret, challenging scientists trying to reconstruct and date the tree of life. The oldest known red algae before the present discovery are 1.2 billion years old. The Indian fossils, 400 million years older and by far the oldest plant-like fossils ever found, suggest that the early branches of the tree of life need to be recalibrated.

“The ‘time of visible life’ seems to have begun much earlier than we thought” says Dr. Bengtson.

The presumed red algae lie embedded in fossil mats of cyanobacteria, called stromatolites, in 1.6 billion-year-old Indian phosphorite. The thread-like forms were discovered first, and when the then doctoral student Therese Sallstedt investigated the stromatolites she found the more complex, fleshy structures.

“I got so excited I had to walk three times around the building before I went to my supervisor to tell him what I had seen!” she says.

The research group was able to look inside the algae with the help of synchrotron-based X-ray tomographic microscopy. Among other things, they have seen regularly recurring platelets in each cell, which they believe are parts of chloroplasts, the organelles within plant cells where photosynthesis takes place. They have also seen distinct and regular structures at the center of each cell wall, typical of red algae.

Read More

More Like This…

HOME A.I.M. Archives

Copyright ©2010-2017 AlgaeIndustryMagazine.com. All rights reserved. Permission required to reprint this article in its entirety. Must include copyright statement and live hyperlinks. Contact editorial@algaeindustrymagazine.com. A.I.M. accepts unsolicited manuscripts for consideration, and takes no responsibility for the validity of claims made in submitted editorial.

Visit our 2017 International Reader’s Poll Platinum Sponsors

bigelow mbiolp_link sfcc

From The A.I.M. Archives

— Refresh Page for More Choices
The U.S. Department of Energy’s just released 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy summarizes the most recent estimates of pote...
Kuo Chia-erh reports for Taipei Times that Taiwan Cement Corp, the nation’s leading cement supplier, has announced plans to expand its microalgae farm, which produces ast...
Natural Icelandic astaxanthin supplier, ArcticFarma, has reached an agreement with a subsidiary of China-based BGG to rename itself in order to avoid market confusion. “B...
The water sample taken from the St. Lucie River near the coastline of Ft. Pierce, Florida was loaded with blue-green algae when it arrived in Ben Spaulding’s lab in Scarb...
Cheryl Katz writes in National Geographic that Iceland’s last living lake balls are disappearing. The fluffy green supersize diatoms as large as a head of cabbage are one...
Since hydrogen fuel cells produce electricity, we are increasingly thinking about hydrogen as a successor to crude oil. But where will the hydrogen come from? Its ecologi...
Haley Gray reports for 5280.com that Upslope Brewing Company, in Boulder, Colorado, is one step closer to its goal of becoming a zero-waste brewery. The craft beer maker ...
Researchers at Iowa State University, in Ames, Iowa, are developing technology, using algae, that improves the efficiency of wastewater reclamation. The system uses verti...
Aquaculture is the fastest-growing segment in the feed industry. According to the 2017 Alltech Global Feed Survey, the aquaculture industry experienced a 12 percent incre...
For algal biofuels to compete with petroleum, farming algae has to become less expensive. Toward that goal, Sandia National Laboratories is testing strains of algae for r...
Almost two years ago, on June 28, 2015, the rocket carrying experiments from Chatfield High School to the International Space Station disintegrated 139 seconds into its f...
Monica Jain of Fish 2.0 writes in National Geographic about how the algae brand is about to undergo an image makeover, and may soon seem flat-out glamorous — once again. ...